3 max_features=5000,# max number of unique words) … While removing stop-words, we perform stemming that is if the word is not a stop-word, … lower () not in stopwords . in. "not good"), and find the stem of each word. If this is not the behavior you desire, and you want to keep punctuation and special characters, you can provide a custom tokenizer to CountVectorizer. ‘unicode’ is a slightly slower method that works on any characters. Removing Punctuations and Stopwords. Notes. The translate () function is available in the built-in string library. I am trying to clean corpus by using CountVectorizer in python. In the next two steps we remove double spacing that may have been caused by the punctuation removal and remove numbers. Lemmatization is the process of converting a word to its base form. After that, this information is converted into numbers by vectorization, where scores are assigned to each word. Transforms text into a sparse matrix of n-gram counts. from nltk.tokenize import sent_tokenize, word_tokenize data = "All work and no play makes jack dull boy. In real-life human writable text data contain various words with the wrong spelling, short words, special symbols, emojis, etc. We suggest that you remove all the punctuation, numeric values, and convert upper case to lower case for each example. Lemmatization. Basically, what it does is to break your text down into words, remove less meaningful words like stop words (the, on, a, of etc) and create a matrix with the topics and the words in each document. Click here to register for the hackathon. The default tokenization in CountVectorizer removes all special characters, punctuation and single characters. Solving The Hackathon. There … None (default) does nothing. The stop_words_ attribute can get large and increase the model size when pickling. Now, we need to split a message into words to remove stop-words and to perform stemming. Sklearn’s CountVectorizer takes all words in all tweets, assigns an ID and counts the frequency of the word per tweet. In your case, the words are only ‘0’ and ‘1’ which are both just 1 character, so they get excluded from the vocabulary, meaning that fit_transform fails. Scikit-learn’s Tfidftransformer and Tfidfvectorizer aim to do the same thing, which is to convert a collection of raw documents to a matrix of TF-IDF features. Remove all stopwords 3. Spacy, its data, and its models can be easily installed using python package index and setup tools. text import CountVectorizer: vectorizer = CountVectorizer corpus = [ 'This is a sentence', 'Another sentence is here', 'Wait for another sentence', 'The sentence is coming', 'The sentence has come'] x = vectorizer. Not sure if we had this discussion before, and I know that the CountVectorizer regex went through a lot of testing so far. CountVectorizer and CountVectorizerModel aim to help convert a collection of text documents to vectors of token counts. Python has nice implementations through the NLTK, TextBlob, Pattern, spaCy and Stanford CoreNLP packages. There is some preprocessing that happens as part of CountVectorizer before the words are actually counted. … None (default) does nothing. Then the words need to be encoded as integers or floating point values for use as input to a machine learning algorithm, called feature extraction (or vectorization). If this is not the behavior you desire, and you want to keep punctuation and special characters, you can provide a custom tokenizer to CountVectorizer . Using CountVectorizer#. I am going to use the 20 Newsgroups data set, visualize the data set, preprocess the text, perform a grid search, train a model and evaluate the performance. This then gives each word a weight based # on its frequency. Text cleaning or Text pre-processing is a mandatory step when we are working with text in Natural Language Processing (NLP). In this study, I present a practice of natural language processing using a Women Clothing Reviews dataset downloaded from Kaggle. Natural Language Processing with Python; Natural Language Processing: remove stop words We start with the code from the previous tutorial, which tokenized words. Project Description. analyzer: string, {‘word’, ‘char’, ‘char_wb’} or callable. This attribute is provided only for introspection and can be safely removed using delattr or set to None before pickling. The default tokenization in CountVectorizer removes all special characters, punctuation and single characters. If this is not the behavior you desire, and you want to keep punctuation and special characters, you can provide a custom tokenizer to CountVectorizer. join ( nopunc ) # Now just remove any stopwords return [ word for word in nopunc . remove signature words (“sara”, “shackleton”, “chris”, “germani”--bonus points if you can figure out why it's "germani" and not "germany") append the updated text string to word_data -- if the email is from Sara, append 0 (zero) to from_data, or append a 1 if Chris wrote the email. from sklearn.model_selection import train_test_split, RandomizedSearchCV from sklearn.metrics import accuracy_score from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from sklearn.pipeline import Pipeline from string import punctuation from nltk.corpus import stopwords from xgboost import XGBClassifier import pandas as pd import numpy as np import … Remove all punctuation 2. How to vectorize sentences using a Pandas and sklearn's CountVectorizer Raw. In this blog, I will discuss linguistic features for detecting the sentiment of Twitter messages. Now, we will perform some simple preprocessing on the paper_text in order to make them more amenable for analysis. Negative Pull Ups Alternative,
Starcraft 2 Terran Unit Counters,
Endurance Limit Of Steel,
Zuko Bending Style Fanfiction,
Bangladesh Vs Nepal Football Match 2020,
Restricted Model F-test,
" />
3 max_features=5000,# max number of unique words) … While removing stop-words, we perform stemming that is if the word is not a stop-word, … lower () not in stopwords . in. "not good"), and find the stem of each word. If this is not the behavior you desire, and you want to keep punctuation and special characters, you can provide a custom tokenizer to CountVectorizer. ‘unicode’ is a slightly slower method that works on any characters. Removing Punctuations and Stopwords. Notes. The translate () function is available in the built-in string library. I am trying to clean corpus by using CountVectorizer in python. In the next two steps we remove double spacing that may have been caused by the punctuation removal and remove numbers. Lemmatization is the process of converting a word to its base form. After that, this information is converted into numbers by vectorization, where scores are assigned to each word. Transforms text into a sparse matrix of n-gram counts. from nltk.tokenize import sent_tokenize, word_tokenize data = "All work and no play makes jack dull boy. In real-life human writable text data contain various words with the wrong spelling, short words, special symbols, emojis, etc. We suggest that you remove all the punctuation, numeric values, and convert upper case to lower case for each example. Lemmatization. Basically, what it does is to break your text down into words, remove less meaningful words like stop words (the, on, a, of etc) and create a matrix with the topics and the words in each document. Click here to register for the hackathon. The default tokenization in CountVectorizer removes all special characters, punctuation and single characters. Solving The Hackathon. There … None (default) does nothing. The stop_words_ attribute can get large and increase the model size when pickling. Now, we need to split a message into words to remove stop-words and to perform stemming. Sklearn’s CountVectorizer takes all words in all tweets, assigns an ID and counts the frequency of the word per tweet. In your case, the words are only ‘0’ and ‘1’ which are both just 1 character, so they get excluded from the vocabulary, meaning that fit_transform fails. Scikit-learn’s Tfidftransformer and Tfidfvectorizer aim to do the same thing, which is to convert a collection of raw documents to a matrix of TF-IDF features. Remove all stopwords 3. Spacy, its data, and its models can be easily installed using python package index and setup tools. text import CountVectorizer: vectorizer = CountVectorizer corpus = [ 'This is a sentence', 'Another sentence is here', 'Wait for another sentence', 'The sentence is coming', 'The sentence has come'] x = vectorizer. Not sure if we had this discussion before, and I know that the CountVectorizer regex went through a lot of testing so far. CountVectorizer and CountVectorizerModel aim to help convert a collection of text documents to vectors of token counts. Python has nice implementations through the NLTK, TextBlob, Pattern, spaCy and Stanford CoreNLP packages. There is some preprocessing that happens as part of CountVectorizer before the words are actually counted. … None (default) does nothing. Then the words need to be encoded as integers or floating point values for use as input to a machine learning algorithm, called feature extraction (or vectorization). If this is not the behavior you desire, and you want to keep punctuation and special characters, you can provide a custom tokenizer to CountVectorizer . Using CountVectorizer#. I am going to use the 20 Newsgroups data set, visualize the data set, preprocess the text, perform a grid search, train a model and evaluate the performance. This then gives each word a weight based # on its frequency. Text cleaning or Text pre-processing is a mandatory step when we are working with text in Natural Language Processing (NLP). In this study, I present a practice of natural language processing using a Women Clothing Reviews dataset downloaded from Kaggle. Natural Language Processing with Python; Natural Language Processing: remove stop words We start with the code from the previous tutorial, which tokenized words. Project Description. analyzer: string, {‘word’, ‘char’, ‘char_wb’} or callable. This attribute is provided only for introspection and can be safely removed using delattr or set to None before pickling. The default tokenization in CountVectorizer removes all special characters, punctuation and single characters. If this is not the behavior you desire, and you want to keep punctuation and special characters, you can provide a custom tokenizer to CountVectorizer. join ( nopunc ) # Now just remove any stopwords return [ word for word in nopunc . remove signature words (“sara”, “shackleton”, “chris”, “germani”--bonus points if you can figure out why it's "germani" and not "germany") append the updated text string to word_data -- if the email is from Sara, append 0 (zero) to from_data, or append a 1 if Chris wrote the email. from sklearn.model_selection import train_test_split, RandomizedSearchCV from sklearn.metrics import accuracy_score from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from sklearn.pipeline import Pipeline from string import punctuation from nltk.corpus import stopwords from xgboost import XGBClassifier import pandas as pd import numpy as np import … Remove all punctuation 2. How to vectorize sentences using a Pandas and sklearn's CountVectorizer Raw. In this blog, I will discuss linguistic features for detecting the sentiment of Twitter messages. Now, we will perform some simple preprocessing on the paper_text in order to make them more amenable for analysis. Negative Pull Ups Alternative,
Starcraft 2 Terran Unit Counters,
Endurance Limit Of Steel,
Zuko Bending Style Fanfiction,
Bangladesh Vs Nepal Football Match 2020,
Restricted Model F-test,
" />
3 max_features=5000,# max number of unique words) … While removing stop-words, we perform stemming that is if the word is not a stop-word, … lower () not in stopwords . in. "not good"), and find the stem of each word. If this is not the behavior you desire, and you want to keep punctuation and special characters, you can provide a custom tokenizer to CountVectorizer. ‘unicode’ is a slightly slower method that works on any characters. Removing Punctuations and Stopwords. Notes. The translate () function is available in the built-in string library. I am trying to clean corpus by using CountVectorizer in python. In the next two steps we remove double spacing that may have been caused by the punctuation removal and remove numbers. Lemmatization is the process of converting a word to its base form. After that, this information is converted into numbers by vectorization, where scores are assigned to each word. Transforms text into a sparse matrix of n-gram counts. from nltk.tokenize import sent_tokenize, word_tokenize data = "All work and no play makes jack dull boy. In real-life human writable text data contain various words with the wrong spelling, short words, special symbols, emojis, etc. We suggest that you remove all the punctuation, numeric values, and convert upper case to lower case for each example. Lemmatization. Basically, what it does is to break your text down into words, remove less meaningful words like stop words (the, on, a, of etc) and create a matrix with the topics and the words in each document. Click here to register for the hackathon. The default tokenization in CountVectorizer removes all special characters, punctuation and single characters. Solving The Hackathon. There … None (default) does nothing. The stop_words_ attribute can get large and increase the model size when pickling. Now, we need to split a message into words to remove stop-words and to perform stemming. Sklearn’s CountVectorizer takes all words in all tweets, assigns an ID and counts the frequency of the word per tweet. In your case, the words are only ‘0’ and ‘1’ which are both just 1 character, so they get excluded from the vocabulary, meaning that fit_transform fails. Scikit-learn’s Tfidftransformer and Tfidfvectorizer aim to do the same thing, which is to convert a collection of raw documents to a matrix of TF-IDF features. Remove all stopwords 3. Spacy, its data, and its models can be easily installed using python package index and setup tools. text import CountVectorizer: vectorizer = CountVectorizer corpus = [ 'This is a sentence', 'Another sentence is here', 'Wait for another sentence', 'The sentence is coming', 'The sentence has come'] x = vectorizer. Not sure if we had this discussion before, and I know that the CountVectorizer regex went through a lot of testing so far. CountVectorizer and CountVectorizerModel aim to help convert a collection of text documents to vectors of token counts. Python has nice implementations through the NLTK, TextBlob, Pattern, spaCy and Stanford CoreNLP packages. There is some preprocessing that happens as part of CountVectorizer before the words are actually counted. … None (default) does nothing. Then the words need to be encoded as integers or floating point values for use as input to a machine learning algorithm, called feature extraction (or vectorization). If this is not the behavior you desire, and you want to keep punctuation and special characters, you can provide a custom tokenizer to CountVectorizer . Using CountVectorizer#. I am going to use the 20 Newsgroups data set, visualize the data set, preprocess the text, perform a grid search, train a model and evaluate the performance. This then gives each word a weight based # on its frequency. Text cleaning or Text pre-processing is a mandatory step when we are working with text in Natural Language Processing (NLP). In this study, I present a practice of natural language processing using a Women Clothing Reviews dataset downloaded from Kaggle. Natural Language Processing with Python; Natural Language Processing: remove stop words We start with the code from the previous tutorial, which tokenized words. Project Description. analyzer: string, {‘word’, ‘char’, ‘char_wb’} or callable. This attribute is provided only for introspection and can be safely removed using delattr or set to None before pickling. The default tokenization in CountVectorizer removes all special characters, punctuation and single characters. If this is not the behavior you desire, and you want to keep punctuation and special characters, you can provide a custom tokenizer to CountVectorizer. join ( nopunc ) # Now just remove any stopwords return [ word for word in nopunc . remove signature words (“sara”, “shackleton”, “chris”, “germani”--bonus points if you can figure out why it's "germani" and not "germany") append the updated text string to word_data -- if the email is from Sara, append 0 (zero) to from_data, or append a 1 if Chris wrote the email. from sklearn.model_selection import train_test_split, RandomizedSearchCV from sklearn.metrics import accuracy_score from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from sklearn.pipeline import Pipeline from string import punctuation from nltk.corpus import stopwords from xgboost import XGBClassifier import pandas as pd import numpy as np import … Remove all punctuation 2. How to vectorize sentences using a Pandas and sklearn's CountVectorizer Raw. In this blog, I will discuss linguistic features for detecting the sentiment of Twitter messages. Now, we will perform some simple preprocessing on the paper_text in order to make them more amenable for analysis. Negative Pull Ups Alternative,
Starcraft 2 Terran Unit Counters,
Endurance Limit Of Steel,
Zuko Bending Style Fanfiction,
Bangladesh Vs Nepal Football Match 2020,
Restricted Model F-test,
" />
We did not notice a difference in the number of URLs used … The default tokenization in CountVectorizer removes all special characters, punctuation and single characters. This function will standardize words (lowercase, remove punctuation), generate word tokens, remove stop words (words that have no descriptive meaning), create bigrams (combination of two words i.e. def remove_punct(text): return ''.join(c for c in text if c not in punctuation) You have already imported the punctuation list from the String package and now you will just check if the sentence has those punctuations, and simply remove it. Given a plain text, we first normalize it and convert it to lowercase and remove punctuation and finally split it up into words, these words are called tokenizers. We'll use this string.punctuation object shortly to remove these punctuation characters from every document in our corpus.-Removing Stop Words . # It will also remove stop words. Tomas Mikolov is one of the developers of word2vec, a popular word embedding method. Linear text segmentation can be seen as a change point detection task and therefore can be carried out with ruptures. Use the following command to install spacy in your machine: sudo pip install spacy. feature_extraction. Remove accents during the preprocessing step. For example: >>> string = "Hello $#! Returns a list of the cleaned text """ # Check characters to see if they are in punctuation nopunc = [ char for char in mess if char not in string . Below is his response when pressed with the question about how to best prepare text data for word2vec. When someone dumps 100,000 documents on your desk in response to FOIA, you’ll start to care! Related course. from sklearn.decomposition import LatentDirichletAllocation vectorizer = CountVectorizer(analyzer='word', min_df=3,# minimum required occurences of a word stop_words='english',# remove stop words lowercase=True,# convert all words to lowercase token_pattern='[a-zA-Z0-9]{3,}',# num chars > 3 max_features=5000,# max number of unique words) … While removing stop-words, we perform stemming that is if the word is not a stop-word, … lower () not in stopwords . in. "not good"), and find the stem of each word. If this is not the behavior you desire, and you want to keep punctuation and special characters, you can provide a custom tokenizer to CountVectorizer. ‘unicode’ is a slightly slower method that works on any characters. Removing Punctuations and Stopwords. Notes. The translate () function is available in the built-in string library. I am trying to clean corpus by using CountVectorizer in python. In the next two steps we remove double spacing that may have been caused by the punctuation removal and remove numbers. Lemmatization is the process of converting a word to its base form. After that, this information is converted into numbers by vectorization, where scores are assigned to each word. Transforms text into a sparse matrix of n-gram counts. from nltk.tokenize import sent_tokenize, word_tokenize data = "All work and no play makes jack dull boy. In real-life human writable text data contain various words with the wrong spelling, short words, special symbols, emojis, etc. We suggest that you remove all the punctuation, numeric values, and convert upper case to lower case for each example. Lemmatization. Basically, what it does is to break your text down into words, remove less meaningful words like stop words (the, on, a, of etc) and create a matrix with the topics and the words in each document. Click here to register for the hackathon. The default tokenization in CountVectorizer removes all special characters, punctuation and single characters. Solving The Hackathon. There … None (default) does nothing. The stop_words_ attribute can get large and increase the model size when pickling. Now, we need to split a message into words to remove stop-words and to perform stemming. Sklearn’s CountVectorizer takes all words in all tweets, assigns an ID and counts the frequency of the word per tweet. In your case, the words are only ‘0’ and ‘1’ which are both just 1 character, so they get excluded from the vocabulary, meaning that fit_transform fails. Scikit-learn’s Tfidftransformer and Tfidfvectorizer aim to do the same thing, which is to convert a collection of raw documents to a matrix of TF-IDF features. Remove all stopwords 3. Spacy, its data, and its models can be easily installed using python package index and setup tools. text import CountVectorizer: vectorizer = CountVectorizer corpus = [ 'This is a sentence', 'Another sentence is here', 'Wait for another sentence', 'The sentence is coming', 'The sentence has come'] x = vectorizer. Not sure if we had this discussion before, and I know that the CountVectorizer regex went through a lot of testing so far. CountVectorizer and CountVectorizerModel aim to help convert a collection of text documents to vectors of token counts. Python has nice implementations through the NLTK, TextBlob, Pattern, spaCy and Stanford CoreNLP packages. There is some preprocessing that happens as part of CountVectorizer before the words are actually counted. … None (default) does nothing. Then the words need to be encoded as integers or floating point values for use as input to a machine learning algorithm, called feature extraction (or vectorization). If this is not the behavior you desire, and you want to keep punctuation and special characters, you can provide a custom tokenizer to CountVectorizer . Using CountVectorizer#. I am going to use the 20 Newsgroups data set, visualize the data set, preprocess the text, perform a grid search, train a model and evaluate the performance. This then gives each word a weight based # on its frequency. Text cleaning or Text pre-processing is a mandatory step when we are working with text in Natural Language Processing (NLP). In this study, I present a practice of natural language processing using a Women Clothing Reviews dataset downloaded from Kaggle. Natural Language Processing with Python; Natural Language Processing: remove stop words We start with the code from the previous tutorial, which tokenized words. Project Description. analyzer: string, {‘word’, ‘char’, ‘char_wb’} or callable. This attribute is provided only for introspection and can be safely removed using delattr or set to None before pickling. The default tokenization in CountVectorizer removes all special characters, punctuation and single characters. If this is not the behavior you desire, and you want to keep punctuation and special characters, you can provide a custom tokenizer to CountVectorizer. join ( nopunc ) # Now just remove any stopwords return [ word for word in nopunc . remove signature words (“sara”, “shackleton”, “chris”, “germani”--bonus points if you can figure out why it's "germani" and not "germany") append the updated text string to word_data -- if the email is from Sara, append 0 (zero) to from_data, or append a 1 if Chris wrote the email. from sklearn.model_selection import train_test_split, RandomizedSearchCV from sklearn.metrics import accuracy_score from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from sklearn.pipeline import Pipeline from string import punctuation from nltk.corpus import stopwords from xgboost import XGBClassifier import pandas as pd import numpy as np import … Remove all punctuation 2. How to vectorize sentences using a Pandas and sklearn's CountVectorizer Raw. In this blog, I will discuss linguistic features for detecting the sentiment of Twitter messages. Now, we will perform some simple preprocessing on the paper_text in order to make them more amenable for analysis.
Annak érdekében, hogy akár hétvégén vagy éjszaka is megfelelő védelemhez juthasson, telefonos ügyeletet tartok, melynek keretében bármikor hívhat, ha segítségre van szüksége.
Amennyiben Önt letartóztatják, előállítják, akkor egy meggondolatlan mondat vagy ésszerűtlen döntés később az eljárás folyamán óriási hátrányt okozhat Önnek.
Tapasztalatom szerint már a kihallgatás első percei is óriási pszichikai nyomást jelentenek a terhelt számára, pedig a „tiszta fejre” és meggondolt viselkedésre ilyenkor óriási szükség van. Ez az a helyzet, ahol Ön nem hibázhat, nem kockáztathat, nagyon fontos, hogy már elsőre jól döntsön!
Védőként én nem csupán segítek Önnek az eljárás folyamán az eljárási cselekmények elvégzésében (beadvány szerkesztés, jelenlét a kihallgatásokon stb.) hanem egy kézben tartva mérem fel lehetőségeit, kidolgozom védelmének precíz stratégiáit, majd ennek alapján határozom meg azt az eszközrendszert, amellyel végig képviselhetem Önt és eredményül elérhetem, hogy semmiképp ne érje indokolatlan hátrány a büntetőeljárás következményeként.
Védőügyvédjeként én nem csupán bástyaként védem érdekeit a hatóságokkal szemben és dolgozom védelmének stratégiáján, hanem nagy hangsúlyt fektetek az Ön folyamatos tájékoztatására, egyben enyhítve esetleges kilátástalannak tűnő helyzetét is.
Jogi tanácsadás, ügyintézés. Peren kívüli megegyezések teljes körű lebonyolítása. Megállapodások, szerződések és az ezekhez kapcsolódó dokumentációk megszerkesztése, ellenjegyzése. Bíróságok és más hatóságok előtti teljes körű jogi képviselet különösen az alábbi területeken:
ingatlanokkal kapcsolatban
kártérítési eljárás; vagyoni és nem vagyoni kár
balesettel és üzemi balesettel kapcsolatosan
társasházi ügyekben
öröklési joggal kapcsolatos ügyek
fogyasztóvédelem, termékfelelősség
oktatással kapcsolatos ügyek
szerzői joggal, sajtóhelyreigazítással kapcsolatban
Ingatlan tulajdonjogának átruházáshoz kapcsolódó szerződések (adásvétel, ajándékozás, csere, stb.) elkészítése és ügyvédi ellenjegyzése, valamint teljes körű jogi tanácsadás és földhivatal és adóhatóság előtti jogi képviselet.
Bérleti szerződések szerkesztése és ellenjegyzése.
Ingatlan átminősítése során jogi képviselet ellátása.
Közös tulajdonú ingatlanokkal kapcsolatos ügyek, jogviták, valamint a közös tulajdon megszüntetésével kapcsolatos ügyekben való jogi képviselet ellátása.
Társasház alapítása, alapító okiratok megszerkesztése, társasházak állandó és eseti jogi képviselete, jogi tanácsadás.
Ingatlanokhoz kapcsolódó haszonélvezeti-, használati-, szolgalmi jog alapítása vagy megszüntetése során jogi képviselet ellátása, ezekkel kapcsolatos okiratok szerkesztése.
Ingatlanokkal kapcsolatos birtokviták, valamint elbirtoklási ügyekben való ügyvédi képviselet.
Az illetékes földhivatalok előtti teljes körű képviselet és ügyintézés.
Cégalapítási és változásbejegyzési eljárásban, továbbá végelszámolási eljárásban teljes körű jogi képviselet ellátása, okiratok szerkesztése és ellenjegyzése
Tulajdonrész, illetve üzletrész adásvételi szerződések megszerkesztése és ügyvédi ellenjegyzése.
Még mindig él a cégvezetőkben az a tévképzet, hogy ügyvédet választani egy vállalkozás vagy társaság számára elegendő akkor, ha bíróságra kell menni.
Semmivel sem árthat annyit cége nehezen elért sikereinek, mint, ha megfelelő jogi képviselet nélkül hagyná vállalatát!
Irodámban egyedi megállapodás alapján lehetőség van állandó megbízás megkötésére, melynek keretében folyamatosan együtt tudunk működni, bármilyen felmerülő kérdés probléma esetén kereshet személyesen vagy telefonon is. Ennek nem csupán az az előnye, hogy Ön állandó ügyfelemként előnyt élvez majd időpont-egyeztetéskor, hanem ennél sokkal fontosabb, hogy az Ön cégét megismerve személyesen kezeskedem arról, hogy tevékenysége folyamatosan a törvényesség talaján maradjon. Megismerve az Ön cégének munkafolyamatait és folyamatosan együttműködve vezetőséggel a jogi tudást igénylő helyzeteket nem csupán utólag tudjuk kezelni, akkor, amikor már „ég a ház”, hanem előre felkészülve gondoskodhatunk arról, hogy Önt ne érhesse meglepetés.