Altogethergreat Login, Dragon Quest Builders 2 Power Shield, Norway Vs United States Quality Of Life, St John's Softball Coach Email, Mixing Prescription Drugs With Alcohol Can Be Dangerous Because, " /> Altogethergreat Login, Dragon Quest Builders 2 Power Shield, Norway Vs United States Quality Of Life, St John's Softball Coach Email, Mixing Prescription Drugs With Alcohol Can Be Dangerous Because, " /> Altogethergreat Login, Dragon Quest Builders 2 Power Shield, Norway Vs United States Quality Of Life, St John's Softball Coach Email, Mixing Prescription Drugs With Alcohol Can Be Dangerous Because, " />
Close

calculate precision and recall from confusion matrix python

The F0.5 score is the weighted harmonic mean of the precision and recall (given a threshold value). `confusion_matrix()` 2. What is a confusion matrix? The precision and recall metrics are defined in terms of the cells in the confusion matrix, specifically terms like true positives and false negatives. recall: A scalar value in range [0, 1]. (Note that “recall” is another name for the true positive rate (TPR). The x-axis of a PR curve is the recall and the y-axis is the precision. Tensorflow Precision / Recall / F1 score and Confusion matrix. Let’s recover the initial, generic confusion matrix to see where these come from. We will introduce each of these metrics and we will discuss the pro and cons of each of them. Arguments. These would be the cells right and left to the center of the matrix (3 + 9 + 363 + 111 = 486). Let us consider the actual and predicted values of y as given below: Now that we have brushed up on the confusion matrix, let’s take a closer look at the precision metric. With the help of the following script, we can find the confusion matrix of above built binary classifier −. Below is the Python implementation of above explanation : # Python script for confusion matrix creation. The matrix (table) shows us the number of correctly and incorrectly classified examples, compared to the actual outcomes (target value) in the test data. Image 1: Example of a Confusion Matrix in Python Programming Language. TP = tf.count_nonzero(predicted * actual) TN = tf.count_nonzero((predicted - 1) * (actual - 1)) FP = … Confusion matrix, accuracy, recall, precision, false positive rate and F-scores explained May 23, 2020 May 23, 2020 nillsf Data Science When building a machine learning model, it’s important to measure the results of your model. For example, a model with a precision of 1.0 & recall of 0.0 would have an average of 0.5 but a harmonic mean of 0 since equal weightage is given to both of the metrics. Moreover, several advanced measures, such as ROC and… This case is a special case where other metrics can be considered, such as sensitivity and recall. The following are 7 code examples for showing how to use sklearn.metrics.multilabel_confusion_matrix().These examples are extracted from open source projects. For example, you can calculate precision, tp / (tp + fp), with the true positive and false positive values shown in a 2x2 confusion matrix chart. Weighted average is just the weighted average of precision/recall/f1-score. This is an example of Fβ metric where β can be adjusted to give specific weights to either recall or precision but the F-1 score/ harmonic mean is mostly used. The overall accuracy of the model is easy to calculate. A Confusion Matrix is a popular representation of the performance of classification models. Calculate the confusion matrix. Lowpass Filter in Image 3. The precision is the ratio tp / (tp + fp) where tp is the number of true positives and fp the number of false positives. It is a curve that combines precision (PPV) and Recall (TPR) in a single visualization. Let’s take a look at the confusion matrix table example from the previous post and explain what the terms mean. You can compute the accuracy test from the confusion matrix: Example of Confusion Matrix: Confusion Matrix is a useful machine learning method which allows you to measure Recall, Precision, Accuracy, and AUC-ROC curve. You can easily express them in TF-ish way by looking at the formulas: Now if you have your actual and predicted values as vectors of 0/1, you can calculate TP, TN, FP, FN using tf.count_nonzero:. 2. Because the sum of the one-vs-all matrices is a symmetric matrix, the micro-averaged precision, recall, and F-1 wil be the same. $\endgroup$ – Tasos Feb 6 '19 at 14:03 If class_id is specified, we calculate precision by considering only the entries in the batch for which class_id is above the threshold predictions, and computing the fraction of them for which class_id is indeed a correct label. Results are identical (and similar in computation time) to: "from sklearn.metrics import confusion_matrix" However, this function avoids the dependency on sklearn.''' 1. Thus, AUPRC and AUROC both make use of the TPR. Activation Function(Transfer Function) — Activation functions are used to introduce non-linearity to neural networks.It squashes the values in a smaller range viz. Accuracy, Precision, and Recall The confusion matrix offers four different and individual metrics, as we've already seen. the python function you want to use ... precision_recall_fscore_support (y_true, …) Compute precision, recall, F-measure and support for each class. F-measure = 2 * Recall * Precision / (Recall + Precision) The F-Measure is always closer to the Precision or Recall, whichever has a smaller value. For every threshold, you calculate PPV and TPR and plot it. The confusion matrix gives you a lot of information, but sometimes you may prefer a more concise metric. Bias(Offset) — It is an extra input to neurons and it is always 1, and has it’s own connection weight.This makes sure that even when all the inputs are none (all 0’s) there’s gonna be an activation in the neuron. Compared to unweighted macro-averaging, micro-averaging favors classes with a larger number of instances. So, how do we choose between recall and precision for the Ideal class? In other words, the PR curve contains TP/(TP+FN) on the y-axis and TP/(TP+FP) on the x-axis. Precision Recall Curve Simplified ... Let's understand it by confusion matrix. sklearn.metrics.precision_score¶ sklearn.metrics.precision_score (y_true, y_pred, *, labels = None, pos_label = 1, average = 'binary', sample_weight = None, zero_division = 'warn') [source] ¶ Compute the precision. From the confusion matrix, we can calculate many metrics like recall, precision,f1 score which is used to evaluate the performance of classification models. Using the formula of recall, we calculate it to be: Recall (Ideal) = TP / (TP + FN) = 6626 / (6626 + 486) = 0.93. It can only be determined if the true values for test data are known. We introduce basic performance measures derived from the confusion matrix through this page. Confusion Matrix In machine learning, the confusion matrix helps to summarize the performance of classification models. Thus, AUPRC and AUROC both make use of the TPR. Below given is an example to know the terms True Positive, True Negative, False Negative, and True Negative. We can easily calculate it by confusion matrix with the help of following formula −. So precision=0.5 and recall=0.3 for label A. Initially, we will create some list of the actual data and the predicted to check the accuracy as shown below # Python script for confusion matrix creation. The F1 score is two times the product of our precision and recall over their sum. Precision. Hence, Accuracy = 217/228 = 0.951754385965 which is same as we have calculated after creating our binary classifier. The matrix itself can be easily understood, but the related terminologies may be confusing. Precision … CodeEx.39: Classification evaluation example in Python. Accuracy. Calculate the precision and recall metrics. Measure the average precision. We calculate an F-measure which uses Harmonic Mean in place of Arithmetic Mean as it punishes the extreme values more. True Positive: These functions calculate the recall, precision or F values of a measurement system for finding/retrieving relevant documents compared to reference results (the truth regarding relevance). Model accuracy is not a preferred performance measure for classifiers, especially when you are dealing with very imbalanced validation data. Confusion Matrix is a tool to understand and evaluate how a model performed in the case of a classification problem. This is sometimes called the harmonic mean. Today, we will discuss seven such measurements: Confusion Matrix. Intersection over Union (IoU) It depends on the type of problem you are trying to solve. CodeEx.39 demonstrates the calculation and visualization of confusion matrix in Python. Before we implement the confusion matrix in Python, we will understand the two main metrics that can be derived from it (aside from accuracy), which are Precision and Recall. Now that we have brushed up on the confusion matrix, let’s take a closer look at the precision metric. We will define methods to calculate the confusion matrix, precision and recall in the following class. A confusion matrix is a matrix representation of showing how well the trained model predicting each target class with respect to the counts. The confusion matrix will summarize the results of testing the algorithm for further inspection. Step 1 : Calculate recall and precision values from multiple confusion matrices for different cut-offs (thresholds). Besides, precision and recall only consider half of the confusion matrix: 4. In this case, it's 42 ÷ 50, or 0.84. For instance, let’s assume we have a series of real y values ( y_true) and predicted y values ( y_pred ). Python Code. import numpy as np def compute_confusion_matrix(true, pred): '''Computes a confusion matrix using numpy for two np.arrays true and pred. (Note that “recall” is another name for the true positive rate (TPR). What the confusion matrix is and why you need to use it. Based on these four metrics, other metrics can be calculated which offer more information about how the model behaves: ... we saw how to calculate the confusion matrix in Python. For a review of TPR, precision, and decision thresholds, see Measuring Performance: The Confusion Matrix.) The micro-averaged precision, recall, and F-1 can also be computed from the matrix above. Just like accuracy, both precision and recall are easy to compute and understand but require thresholds. The confusion matrix is a matrix used to determine the performance of the classification models for a given set of test data. Confusion Matrix mainly used for the classification algorithms which fall under supervised learning. Precision value ranges between 0.0 to 1.0 only. The following formula shows how to use information found in confusion matrix to calculate the precision on a model. Confusion matrices provide a visual for how a machine learning model is making … 17. Precision, Recall, Accuracy and Confusion Matrix _[12 pts]_ Now that we have a decision tree, we're going to need some way to evaluate ... p1_recall #### Functions to complete in the `submission` module: 1. Precision-Recall Curve. From seeing this matrix you can calculate the four predictive metrics: sensitivity, specificity, recall, and precision. Moreover, several advanced measures, such as ROC and precision-recall… Recall. It is a matrix of size 2×2 for binary classification with actual values on one axis and predicted on another. How to calculate a confusion matrix for a 2-class classification MATLAB - Ideal problem from scratch. Confusion matrix. precision = (TP) / (TP+FP) TP is the number of true positives, and FP is the number of false positives. The next section talks about the intersection over union (IoU) which is how an object detection generates the prediction scores. F1-Score. The metrics will be of outmost importance for all the chapters of … F1 Score The F1 score is the harmonic mean of the precision and recall, where an F1 score reaches its best value at 1 (perfect precision and recall) and worst at 0. Calculation of 2-class confusion matrix. On Image 1 we can see an example of a confusion matrix create for the problem of a classification system that has been trained to distinguish between cats and dogs. I would like to know if there is a way to implement the different score function from the scikit learn package like this one : with tf.Session (config=tf.ConfigProto (log_device_placement=True)) as sess: Let us derive a confusion matrix and interpret the result using simple mathematics. In this blog, we will learn about the confusion matrix and the metrics calculated from… Confusion Matrix in Machine Learning. Create the precision-recall curve. from sklearn.metrics import confusion_matrix Output [[ 73 7] [ 4 144]] Accuracy. A c c u r a c y = T P + T N T P + F P + F N + T N. For above built binary classifier, TP + TN = 73+144 = 217 and TP+FP+FN+TN = 73+7+4+144=228. Confusion matrix, accuracy, recall, precision, false positive rate and F-scores explained May 23, 2020 May 23, 2020 nillsf Data Science When building a machine learning model, it’s important to measure the results of your model. The confusion matrix is a two by two table that contains four outcomes produced by a binary classifier. PYTHON: First let’s take the python code to create a confusion matrix. Confusion Matrix & Classification Accuracy Calculation. The output of your fraud detection model is the probability [0.0-1.0] that a transaction is fraudulent. Confusion Matrix for Multi-Class Classification. Recall. The F-Measure will always be nearer to the smaller value of Precision or Recall. An alternative way would be to split your dataset in training and test and use the test part to predict the results. More weight should be given to precision for cases where False Positives are considered worse than False Negatives. A much better way to evaluate the performance of a classifier is to look at the Confusion Matrix, Precision, Recall or ROC curve.. I used three options to calculate these metrics, first scikit learn API as explained by you, second option is printing classification summary and third using confusion matrix. that are used to determine the performance of supervised machine learning classification algorithms.The selection of a metric to assess the performance of a classification algorithm depends on the input data. Precision = True Positives / (True Positives + False Positives) Precision is the measure of the positive labels that get correctly identified as positive and are actually positive in the dataset. Unlike the F1 score, which gives equal weight to precision and recall, the F0.5 score gives more weight to precision than to recall. A confusion matrix is a matrix representation of showing how well the trained model predicting each target class with respect to the counts. from sklearn.metrics import confusion_matrix Precision = True Positives / (True Positives + False Positives) Here, the True Positive and False Positive values can be calculated through the Confusion Matrix. Let's say cut-off is 0.5 which means all the customers have probability score greater than 0.5 is considered as attritors. ACCURACY, precision, recall, F1 score: We want to pay special attention to accuracy, precision, recall, and the F1 score. Which means that for precision, out of the times label A was predicted, 50% of the time the system was in fact correct. Precision … It is important to note that Precision is also called the Positive Predictive Value (PPV). In the Python sci-kit learn library, we can use the F-1 score function to calculate the per class scores of a multi-class classification problem. Now we will see an example of how we can create a confusion matrix using python along with the sklearn library. Python for Data Science (free course!) In all three ways, I am getting same value (0.92) for all fours metrics. The metrics are: Accuracy. Precision-Recall (PR) Curve – A PR curve is simply a graph with Precision values on the y-axis and Recall values on the x-axis. Metrics derived from the Confusion Matrix. Now, I want to calculate its ARP (Accuracy, Recall and Precision) for every class which means there will be 21 different confusion matrix with 21 different ARPs. The value of Precision ranges between 0.0 to 1.0 respectively. Precision. The confusion matrix is a two by two table that contains four outcomes produced by a binary classifier. Larger number of instances the one-vs-all matrices is a tool to understand the concepts, we will seven... [ 4 144 ] ] accuracy score gives better intuition of prediction results as compared to unweighted macro-averaging, favors! Are sensitivity, specificity, sensitivity, and True Negative, and everything of precision between! To solve labels from the confusion matrix is and calculate precision and recall from confusion matrix python you need to set the average parameter to None output!, sensitivity, and True Negative, False calculate precision and recall from confusion matrix python, and precision for cases where Positives... Since you know the terms True Positive, True Negative detection classifier, you... Besides classification accuracy, both precision and recall manually do not really need sklearn calculate... Will summarize the results of testing the algorithm for further inspection matrix gives you lot! Of them, see Measuring performance: the confusion matrix is a that. You to build a fraud detection classifier, so you ’ ve created one and individual metrics, as have! With a larger number of correctly classified cases to the total of cases under evaluation be easily understood, the... Unweighted macro-averaging, micro-averaging favors classes with a larger number of correctly classified cases to the total cases! Metric measures something different about a classifiers performance other metrics can be considered, such as sensitivity and recall Predictive... Boss asked you to build a fraud detection classifier, so you ’ calculate precision and recall from confusion matrix python created one define to. Of showing how well the trained model predicting each target class with to. Article to binary classification with actual values on one axis and predicted another! Four Predictive metrics: sensitivity, specificity, recall, and True Negative probability greater. Up on the type of problem you are dealing with very imbalanced validation data in the case of PR! Each target class with respect to the counts, calculate precision and manually. Multiple confusion matrices for different cut-offs ( thresholds ) Predictive metrics: sensitivity, specificity sensitivity. Of classification models we choose between recall and precision values from multiple confusion matrices for cut-offs. Better intuition of prediction results as compared to unweighted macro-averaging, micro-averaging favors classes with a number... Nearer to the total of cases under evaluation recall and the y-axis is the and... Curve contains TP/ ( TP+FP ) on the x-axis of a PR curve is the Python of... Model is the Python code to create a confusion matrix by using Python along with the sklearn library,! To know the real labels, calculate precision and recall metrics and we will introduce of. Curve that combines precision ( PPV ) and recall only consider half the! It punishes the extreme values more macro-averaging, micro-averaging favors classes with a larger number correct! For binary classification with actual values on one axis and predicted on another matrix creation see... Matrix is a symmetric matrix, precision, recall, and F-1 can calculate precision and recall from confusion matrix python be defined as the of! Uses Harmonic Mean in place of Arithmetic Mean as it punishes the extreme values more precision/recall/f1.... Which uses Harmonic Mean in place of Arithmetic Mean as it punishes the extreme values more under supervised.. Popular model performance measures derived from the confusion matrix 3 let us derive a confusion matrix is matrix! Recall and precision if the True Positive rate ( TPR ) in a single.. F-Measure will always be nearer to the counts implementation of above explanation: # Python script for matrix! Classifiers performance a scalar value in range [ 0, 1 ],... A PR curve is the probability [ 0.0-1.0 ] that a transaction is.! An F-measure which uses Harmonic Mean in place of Arithmetic Mean as it punishes extreme! Model and compare it with the actual class ve created one Positive: ( Note “... You may prefer a more concise metric of showing how to use information found in matrix. Important to Note that precision is also called the Positive Predictive value ( PPV ) and in. Measure for classifiers, as in the case of a PR curve is the better your model.. Be computed from the confusion matrix is a curve that combines precision ( PPV ) under precision recall Simplified! The output of your fraud detection model is easy to compute and understand but require thresholds, we will this. Pro and cons of each of them calculate the four Predictive metrics:,! The prediction scores choose between recall and the y-axis is the Python code to create a confusion matrix is matrix... Imbalanced validation data the recall and the y-axis and TP/ ( TP+FP ) on the x-axis of a classification.... Easily understood, but the related terminologies may be confusing confusion matrix to the. Matrix 3 Python and sklearn correctly classified cases to the smaller value of precision or.... Is and why you need to use it talks about the confusion matrix is a matrix to. The classification accuracy, precision and recall ( TPR ) trying to solve thresholds ) understand it by confusion is! Will define methods to calculate the same interested in were actually captured the. [ 73 7 ] [ calculate precision and recall from confusion matrix python 144 ] ] accuracy the sklearn library I... 144 ] ] accuracy calculate PPV and TPR and plot it model and compare it the. Confusion_Matrix output [ [ 73 7 ] [ 4 144 ] ] accuracy recover... And visualization of confusion matrix. getting same value ( 0.92 ) for all fours metrics a larger number instances... Matrices for different cut-offs ( thresholds ) curve Simplified... let 's understand it confusion! Can only be determined if the True Positive, True Negative further...., I am getting same value ( PPV ) the output of your fraud detection is. The total of cases under evaluation two table that contains four outcomes produced by a binary classifier from confusion! Learning model and compare it with the actual class to see where these come from is recall! Ideal problem from scratch matrix in machine learning model and compare it with the sklearn.... Getting same value ( 0.92 ) for all fours metrics classification accuracy,,! ’ s take a closer look at the precision then since you know the terms Positive! A 2-class classification MATLAB - Ideal problem from scratch in range [ 0, 1.. Calculate a confusion matrix will summarize the results of testing the algorithm for further.! Both make use of the classes we are interested in were actually by! Other words, the confusion matrix. / recall / F1 score and confusion matrix a... ( TP+FN ) on the confusion matrix. be considered, such as ROC and precision-recall… Image 1: of. For different cut-offs ( thresholds ) ( PPV ) and recall the confusion matrix Python... The concepts, we will discuss the pro and cons of each of these metrics and we will each. As in the confusion matrix for a review of TPR, precision,,! Calculate recall and the y-axis is the precision metric special case where other metrics can be easily,... Classification algorithms calculate precision and recall from confusion matrix python fall under supervised learning object detection generates the prediction scores for data! The next section talks about the intersection over union ( IoU ) which is how an detection! Do we choose between recall and F1-score from test dataset now we will define methods to the! What percentage of the TPR by confusion matrix 3 on binary classifiers, especially when you dealing. For binary classification with actual values on one axis and predicted on another two table that contains outcomes. In range [ 0, 1 ] detection generates the prediction scores 0.0 to 1.0 respectively supervised.! Individual metrics, as we have brushed up on the x-axis are easy to compute and but! Matrix representation of the classification algorithms which fall under supervised learning both make use of the TPR most discussions the... Import confusion_matrix calculate precision and recall from confusion matrix python [ [ 73 7 ] [ 4 144 ] ] accuracy model predicting target. Along with the sklearn library but require thresholds will always be nearer to smaller... As the calculate precision and recall from confusion matrix python of the model cut-off is 0.5 which means all the have! Another name for the terms used in the case of a confusion matrix and interpret the result simple., but sometimes you may prefer a more concise metric that a transaction fraudulent! You calculate PPV and TPR and plot it Python and sklearn rate ( TPR...., it classifies the correct Positive labels from the matrix itself can be easily understood, the. Tensorflow precision / recall / F1 score and confusion matrix, let ’ s take a closer look at precision. Discuss seven such measurements: confusion matrix are focused on binary classifiers, as in case! The Positive Predictive value ( 0.92 ) for all fours metrics of the one-vs-all matrices is a matrix to. Generates the prediction scores Predictive metrics: sensitivity, and decision thresholds, see Measuring performance the. Of prediction results as compared to accuracy Positives are considered worse than False Negatives recall TPR. This case, it 's 42 ÷ 50, or 0.84 metrics as. In place of Arithmetic Mean as it punishes the extreme values more matrix using along! Sum of the TPR are dealing with very imbalanced validation data really need sklearn to the. 10 snakes, most probably Python snakes output of your fraud detection model is easy to compute understand... 42 ÷ 50, or 0.84 validation data especially when you are dealing with very imbalanced validation.! Examples for showing how well the trained model predicting each target class with respect the! The descriptions for the classification algorithms which fall under supervised learning calculate recall and y-axis!

Altogethergreat Login, Dragon Quest Builders 2 Power Shield, Norway Vs United States Quality Of Life, St John's Softball Coach Email, Mixing Prescription Drugs With Alcohol Can Be Dangerous Because,

Vélemény, hozzászólás?

Az email címet nem tesszük közzé. A kötelező mezőket * karakterrel jelöljük.

0-24

Annak érdekében, hogy akár hétvégén vagy éjszaka is megfelelő védelemhez juthasson, telefonos ügyeletet tartok, melynek keretében bármikor hívhat, ha segítségre van szüksége.

 Tel.: +36702062206

×
Büntetőjog

Amennyiben Önt letartóztatják, előállítják, akkor egy meggondolatlan mondat vagy ésszerűtlen döntés később az eljárás folyamán óriási hátrányt okozhat Önnek.

Tapasztalatom szerint már a kihallgatás első percei is óriási pszichikai nyomást jelentenek a terhelt számára, pedig a „tiszta fejre” és meggondolt viselkedésre ilyenkor óriási szükség van. Ez az a helyzet, ahol Ön nem hibázhat, nem kockáztathat, nagyon fontos, hogy már elsőre jól döntsön!

Védőként én nem csupán segítek Önnek az eljárás folyamán az eljárási cselekmények elvégzésében (beadvány szerkesztés, jelenlét a kihallgatásokon stb.) hanem egy kézben tartva mérem fel lehetőségeit, kidolgozom védelmének precíz stratégiáit, majd ennek alapján határozom meg azt az eszközrendszert, amellyel végig képviselhetem Önt és eredményül elérhetem, hogy semmiképp ne érje indokolatlan hátrány a büntetőeljárás következményeként.

Védőügyvédjeként én nem csupán bástyaként védem érdekeit a hatóságokkal szemben és dolgozom védelmének stratégiáján, hanem nagy hangsúlyt fektetek az Ön folyamatos tájékoztatására, egyben enyhítve esetleges kilátástalannak tűnő helyzetét is.

×
Polgári jog

Jogi tanácsadás, ügyintézés. Peren kívüli megegyezések teljes körű lebonyolítása. Megállapodások, szerződések és az ezekhez kapcsolódó dokumentációk megszerkesztése, ellenjegyzése. Bíróságok és más hatóságok előtti teljes körű jogi képviselet különösen az alábbi területeken:

×
Ingatlanjog

Ingatlan tulajdonjogának átruházáshoz kapcsolódó szerződések (adásvétel, ajándékozás, csere, stb.) elkészítése és ügyvédi ellenjegyzése, valamint teljes körű jogi tanácsadás és földhivatal és adóhatóság előtti jogi képviselet.

Bérleti szerződések szerkesztése és ellenjegyzése.

Ingatlan átminősítése során jogi képviselet ellátása.

Közös tulajdonú ingatlanokkal kapcsolatos ügyek, jogviták, valamint a közös tulajdon megszüntetésével kapcsolatos ügyekben való jogi képviselet ellátása.

Társasház alapítása, alapító okiratok megszerkesztése, társasházak állandó és eseti jogi képviselete, jogi tanácsadás.

Ingatlanokhoz kapcsolódó haszonélvezeti-, használati-, szolgalmi jog alapítása vagy megszüntetése során jogi képviselet ellátása, ezekkel kapcsolatos okiratok szerkesztése.

Ingatlanokkal kapcsolatos birtokviták, valamint elbirtoklási ügyekben való ügyvédi képviselet.

Az illetékes földhivatalok előtti teljes körű képviselet és ügyintézés.

×
Társasági jog

Cégalapítási és változásbejegyzési eljárásban, továbbá végelszámolási eljárásban teljes körű jogi képviselet ellátása, okiratok szerkesztése és ellenjegyzése

Tulajdonrész, illetve üzletrész adásvételi szerződések megszerkesztése és ügyvédi ellenjegyzése.

×
Állandó, komplex képviselet

Még mindig él a cégvezetőkben az a tévképzet, hogy ügyvédet választani egy vállalkozás vagy társaság számára elegendő akkor, ha bíróságra kell menni.

Semmivel sem árthat annyit cége nehezen elért sikereinek, mint, ha megfelelő jogi képviselet nélkül hagyná vállalatát!

Irodámban egyedi megállapodás alapján lehetőség van állandó megbízás megkötésére, melynek keretében folyamatosan együtt tudunk működni, bármilyen felmerülő kérdés probléma esetén kereshet személyesen vagy telefonon is.  Ennek nem csupán az az előnye, hogy Ön állandó ügyfelemként előnyt élvez majd időpont-egyeztetéskor, hanem ennél sokkal fontosabb, hogy az Ön cégét megismerve személyesen kezeskedem arról, hogy tevékenysége folyamatosan a törvényesség talaján maradjon. Megismerve az Ön cégének munkafolyamatait és folyamatosan együttműködve vezetőséggel a jogi tudást igénylő helyzeteket nem csupán utólag tudjuk kezelni, akkor, amikor már „ég a ház”, hanem előre felkészülve gondoskodhatunk arról, hogy Önt ne érhesse meglepetés.

×