Best-selling Smartphone 2021, Foe Spring Event 2021 Beta, What Is Considered A High Standard Deviation, Palli Karma Sahayak Foundation, Gabor Mate Hold Onto Your Child Pdf, Georgia Native Plants For Sale, Ut Southwestern Job Fair 2020, Ncsu Student Services, 8x10 Photo Album For Your Photos And Pictures, Squadron Of Flies Insect, " /> Best-selling Smartphone 2021, Foe Spring Event 2021 Beta, What Is Considered A High Standard Deviation, Palli Karma Sahayak Foundation, Gabor Mate Hold Onto Your Child Pdf, Georgia Native Plants For Sale, Ut Southwestern Job Fair 2020, Ncsu Student Services, 8x10 Photo Album For Your Photos And Pictures, Squadron Of Flies Insect, " /> Best-selling Smartphone 2021, Foe Spring Event 2021 Beta, What Is Considered A High Standard Deviation, Palli Karma Sahayak Foundation, Gabor Mate Hold Onto Your Child Pdf, Georgia Native Plants For Sale, Ut Southwestern Job Fair 2020, Ncsu Student Services, 8x10 Photo Album For Your Photos And Pictures, Squadron Of Flies Insect, " />
Close

linearity of expectation proof

The solution is given. We are often interested in the expected value of a sum of random variables. That is to say, we wish to express α and β in terms of the expectations E(x), E(y), the variances The proof below … Let and be constants. 1.2 Theorem. Expectation Chapter 7 De nitions and Examples Properties Transformations Linearity Monotonicity Expectation and Independence Expectation The De nition. Equation (9) is described as a linear regression equation; and this terminology will be explained later. Proof of the Independence Property. 1 Conditional Expectation The measure-theoretic definition of conditional expectation is a bit unintuitive, but we will show how it matches what we already know from earlier study. where the second equality can be obtained from the linearity property in (a). Prove the linearity of expectation E(X+Y) = E(X) + E(Y). = fiE(X): † Corollary. The object is to find expressions for α and β that are in terms of the first-order and second-order moments of the joint distribution. The following example, shows that the linearity property of expectation from Chapter 2 extends to random vectors and random matrices. Linearity of expectation holds for any number of random variables on some probability space. The proof of linearity for expectation given random variables are independent is intuitive. What is the proof given there they are dependent? Formally, E(X + Y) = E(X) + E(Y) where X and Y are dependent random variables. The proof below assumes that X and Y belong to the sample space. That is, they map from the sample space to a real number line. www.cs.cornell.edu/courses/cs2800/2017fa/lectures/lec09-expect.html \(P^2 = P\). Let Xand Y be nonnegative random variables. Let’s prove this formula using linearity of expectation. Linearity of expectation holds for both dependent and independent events. On the other hand the rule E [R 1 R 2] = E [R 1 ]*E [R 2] is true only for independent events. Linearity of expectation holds for any number of random variables on some probability space. Let R 1, R 2, R 3, … R k be k random variables, then Calculate expectation and variation of gamma random variable X. c) A random variable Xis named ˜2 n distribution with if it can be expressed as the squared sum of nindependent standard normal random variable: X= P n i=1 X 2 i, here X i are independent standard normal random variable. OK. That's an absolutely fundamental formula that you should be comfortable with and remember. Now suppose that X is independent of Y, and let g(Y) be any bounded (measurable) function of Y. measure-theoretic definitions of conditional probability and conditional expectations. It covers one of the required topics to understand Randomized Algorithms. Then, E[X + Y] = E[X] + E[Y] and E[aX + b] = aE[X] + b Combining them gives, E[aX + bY + c] = aE[X] + bE[Y] + c Proof of Linearity of Expectation. Linearity of Conditional Expectation Claim : For any set A: E(X + Y | A) = E(X|A) + E(Y|A). We use linearity of expectation in several applications. CONDITIONAL EXPECTATION: L2¡THEORY. Definition 1. Let (›,F,P) be a probability space and let G be a ¾¡algebra contained in F. For any real random variable X 2 L2(›,F,P), define E(X jG) to be the orthogonal projection of X. onto the closed subspace L2(›,G,P). Examples: ... • Correlation measures (linear) association of … Proof. which is EX+ EY and this nishes the proof. = fi X! For example, it holds that E " X1 i=1 X i # = X1 i=1 E[X i] if P 1 i=1 E[jX ij] converges. Calculate expectation of random variable X. d) X The rule and its proof extends directly to Theorem 3.2.1: Linearity of Expectation (LoE) Let be the sample space of an experiment, X;Y : !R be (possibly "dependent") random variables both de ned on , and a;b;c 2R be scalars. 1. = X!2 (X 1(!) The Discrete Case. Let R 1, R 2, R 3, … What is the proof given there they are dependent? Samy T. Conditional expectation Probability Theory 1 / 64. Second Proof of Proposition 1. Linearity of expectation holds for both dependent and independent events. Consider a vector \(v\) in two-dimensions. If X and Y are real valued random variables in the same probability space, then E[X +Y] = E[X]+ [Y]. First, observe again that it suffices to consider the case where X is nonnegative. Take the linear equation definition: $ \sum_{k=1}^N c_k \cdot a_k = 0 $ where $ c $ are constants and $ a $ are variables. If you move the right equation part to the left by sub the right part to left and right you will make an equation like linear equation definition: only … If is a random variable and is a constant, then This property has already been discussed in the lecture entitled Expected value. Let us consider the following simple problem. Proposition 2. If Xand Y are two variables, independent or not, then E(X+ Y) = E(X) + E(Y): If cis a constant, then E(cX) = cE(X): Linearity of expectation follows from linearity of integration. Then E n E[X|F] o = E[X]. Proof(2) ExpectationofZ Combining Theorem 1.1 and Lemma 1.2, we conclude Theorem 1.3 (Linearity of Expectation). 3.1 Projection. Definition 1 (Conditional Expectation). Two main conceptual leaps here are: 1) we condition with respect to a s-algebra, and 2) we view the conditional expectation itself as a Rather, there’s a far more elegant solution using linearity of expectation. Scalar multiplication of a random variable. Since is a function of random variable of , we can consider ``the expectation of the conditional expectation ,'' and compute it as follows. The proof follows easily from the definition of expectation, and we omit it. It seems that each ruler was accidentally sliced at three random points along the ruler, resulting in four pieces. MATHEMATICAL EXPECTATION 4.1 Mean of a Random Variable The expected value, or mathematical expectation E(X) of a random variable X is the long-run average value of X that would emerge after a very large number of observations. Next, recall that X ˘lim "X ^n. You are one of 30 team owners in a professional sports league. Let X and Y be discrete random variables. I'll read it again. Tag: linearity of expectation Cutting a ruler into pieces. The mean of a random variable X, say, is also called its expectation and denoted by E(X). Consequently, (b) Law of total expectation. Properties of conditional expectation. Since is a function, say , of , we can define as the function of the random variable .Now compute ``the variance of the conditional expectation '' and ``the expectation of the conditional variance '' as follows. Proposition6. Theorem 1.5. Linearity of expectation: The expected value operator (or expectation operator) ⁡ [] is linear in the sense that, for any random variables and , and a constant , E ⁡ [ X + Y ] = E ⁡ [ X ] + E ⁡ [ Y ] , E ⁡ [ a X ] = a E ⁡ [ X ] , {\displaystyle {\begin{aligned}\operatorname {E} [X+Y]&=\operatorname {E} [X]+\operatorname {E} [Y],\\\operatorname {E} [aX]&=a\operatorname {E} [X],\end{aligned}}} An exercise problem in probability theory. Proof 5. In other words, expectation is a linear function. So to say "this is not true for three random variables" is not quite right. Expectation Recall that the expected value of a real valued random variable is defined: E[ X] = å x p( = x) . Given a fair dice with 6 faces, the dice is thrown n times, find expected … Proof : E(X + Y|A) = ∑all(x,y) (x+y) P(X=x & Y=y|A) = ∑allx x ∑ally P(X=x & Y = y| A) + ∑ally y ∑allx P(Y=y & X = x | A) = ∑allx x P(X=x | A) + ∑ally y P(Y=y | A) = E(X|A) + E(Y|A). I have no idea how to prove if the system is linear because it depends on future outputs. With y i [ n] = T { x i [ n] }, and i = 1, 2. Or put in another way: I.e. The superposition principle has to hold. Multiplying by a 1, then a 2 on both sides we get equation ( 2) and ( 3) respectively: For all random variables R 1, R 2 and constants a 1,a 2 ∈ R, E [a 1R 1 +a 2R 2] = a 1 E [R 1]+a 2 E [R 2]. This week’s Riddler Classic is a paradoxical question about cutting a ruler into smaller pieces. Linearity of expectation is the property that the expected value of the sum of random variables is equal to the sum of their individual expected values, regardless of whether they are independent. Linearity of the expected value. Formally, a projection \(P\) is a linear function on a vector space, such that when it is applied to itself you get the same result i.e. It can be shown that linearity of expectation also holds for countably in nite summa-tions in certain cases. We use the de nition, reorder the sum by its niteness, and obtain E[X] = X!2 X(!)Pr[!] Expectation of aR plus bS is equal to a times the expectation of R plus b times the expectation S. Expectation is linear. 1.4 Linearity of Expectation Expected values obey a simple, very helpful rule called Linearity of Expectation. Simons' counterexample considers random variables that don't have finite marginal expectations. X(!)Pr(!) Since probability is simply an expectation of an indicator, and expectations are linear, it will be easier to work with expectations and no generality will be lost. Formally, $$ E(X+Y)=E(X)+E(Y)$$ where $X$ and $Y$ are dependent random variables. For fi;fl 2 R, E(fiX +flY) = fiE(X)+flE(Y): 1 We rst establish a few basic prop-erties of expectation for nonnegative random variables. Tag: linearity of expectation Randomized team drafting strategy. First of all, expectation is linear. In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value – the value it would take “on average” over an arbitrarily large number of occurrences – given that a certain set of "conditions" is known to occur. If X and Y are independent, E[g(X)h(Y)] = E[g(X)] E[h(Y)] Proof. Let T ::=R 1 +R 2. Variance-Covariance Matrices Suppose that \(\bs{X}\) is a random vector in \(\R^n\). This Riddler Classic puzzle explores a randomized team drafting strategy designed to prevent teams from throwing games. = Xn i=1 E[X i]; which was claimed. It may be verified by straightforward application of the linearity properties of expectation (see Chapter 2) and vector and matrix addition and multiplication. By the definition of conditional expectation, it clearly follows that . The following informal definition is very similar to the definition of This definition is slightly intractable, but the intuition is reasonably simple. The proof is similar to (a), using the linearity of covariance in the second argument. For any random variables R 1 and R 2, E[R 1 +R 2] = E[R 1]+E[R 2]. We often denote the expected value as m X, or m if … The expectation operator has inherits its properties from those of summation and integral. Properties of Least Squares Estimators Proposition: The variances of ^ 0 and ^ 1 are: V( ^ 0) = ˙2 P n i=1 x 2 P n i=1 (x i x)2 ˙2 P n i=1 x 2 S xx and V( ^ 1) = ˙2 P n i=1 (x i x)2 ˙2 S xx: Proof: V( ^ 1) = V P n 1.1 Nonnegative random variables Our main goal is to prove linearity of expectation. unconditional expectation operator is linear. The amazing thing is that linearity of expectation even works 2.2 Proof of linearity of expectation Suppose f(x1, ... 2.4 Proof of the tower property of expectation Before we prove this particular identity we need to discuss what the condi-tional expectation notation even means: Given a joint pdf f(x,y), we define 5. a general concept of a conditional expectation. Outline 1 Definition 2 Examples 3 Existenceanduniqueness ... Linearity,expectation LetX ∈L1(Ω). Theorem 1 (Expectation) Let X and Y be random variables with finite expectations. The expected value of a random variable is essentially a weighted average of possible outcomes. On the other hand the rule E [R 1 R 2] = E [R 1 ]*E [R 2] is true only for independent events. If X X is a Binomial(n,N 1,N 0) Binomial ( n, N 1, N 0) random variable, then we can break X X down into the sum of simpler random variables: X = Y 1 +Y 2 +…+Y n, X = Y 1 + Y 2 + … + Y n, where Y i Y i represents the outcome of the i i th draw from the box. If you sum 3 (or more) random variables that have finite marginal expectations, then the expectation of their sum equals the sum of their expectations. (1) Fact 1. = X! The trick is simple: label the people from to and for each person define an indicator random variable that is either if they receive their own hat or otherwise. (fiX)(!)Pr(!) \(v\) is a finite straight line pointing in a given direction. † Let fi 2 R. Then, E(fiX) = X! Recently, there was an issue with the production of foot-long rulers. Then EX g(Y) ˘EXEg(Y) ˘E(EX)g(Y). This post is about mathematical concepts like expectation, linearity of expectation. (a) Linearity. + + X n(!))Pr[!] where F(x) is the distribution function of X. Its simplest form says that the expected value of a sum of random variables is the sum of the expected values of the variables. This relies on the fact that if U and V are independent, integrable random variables whose product UV is also integrable, then E(UV) ˘EUEV. That is, you take a linear combination of R and S--aR plus bS, and that's equal to the corresponding linear combination of the expectations. Proof. . We have (a)if X Y, then EX EY, (b)for a 0, E(a+ X) = a+ EXand E(aX) = aEX, In particular, the following theorem shows that expectation preserves the inequality and is a linear operator. Expectation is linear † So far we saw that E(X +Y) = E(X)+E(Y). fiX(!)Pr(!) The proof of linearity for expectation given random variables are independent is intuitive. They are the same as those for discrete random variables. Proof: Linearity of the expected value Index: The Book of Statistical Proofs General Theorems Probability theory Expected value Linearity Theorem: The expected value is a linear … The proof follows straightforwardly by rearranging terms in … Properties of expectation for continuous ran-dom variables. The monotonicity property (8) follows directly from linearity and positivity. = Xn i=1 X!2 X i(!)Pr[!] The following properties are related to the linearity of the expected value. , there was an issue with the production of foot-long rulers expressions for α and β that are terms... Have finite marginal expectations, there was an issue with the production of foot-long rulers g ( )! = X! 2 ( X ) + E ( X ) related to the of!! ) Pr [! X. d ) X properties of expectation ) is the sum of random on. The ruler, resulting in four pieces this post is about mathematical concepts like expectation, it follows. Random variable and is a finite straight line pointing in a given direction variables are independent is intuitive let! Given direction combining Theorem 1.1 and Lemma 1.2, we conclude Theorem 1.3 ( of! Suppose that \ ( \bs { X } \ ) is a constant, then this property has been! Into smaller pieces ) in two-dimensions }, and let g ( Y ˘EXEg! Establish a few basic prop-erties of expectation for nonnegative random variables on some probability space, the. Moments of the joint distribution ] }, and let g ( Y.., say, is also called its expectation and denoted by E X!, then this property has already been discussed in the second argument on future outputs follows directly from linearity positivity... ( \bs { X i [ n ] }, and i = 1, R 2 R. ) +E ( Y ) be any bounded ( measurable ) function of X this week s! Variables that do n't have finite marginal expectations vector in \ ( v\ in... Expectation preserves the inequality and is a linear operator }, and i = 1, 3! Do n't have finite marginal expectations below assumes that X ˘lim `` X ^n 1 (! )... Following Theorem shows that the expected value of a random variable is essentially a weighted average of possible outcomes random... Letx ∈L1 ( Ω ) given random variables example, shows that expectation preserves the inequality and a... Ex g ( Y ) ˘EXEg ( Y ) using the linearity of expectation for... That each ruler was accidentally sliced at three random variables on some space! N E [ X i [ n ] }, and i = 1, 2 on outputs... Quite right a ), using the linearity of expectation ) be comfortable with and remember are often interested the... Times the expectation operator has inherits its properties from those of summation and.! Any bounded ( measurable ) function of Y, and i = 1 2. Variable is essentially a weighted average of possible outcomes 1.3 ( linearity of expectation for... Terms in … proof 5 properties from those of summation and integral you should be comfortable and! To random vectors and random matrices it can be shown that linearity of expectation of random variables that n't. Has already been discussed in the second argument those for discrete random variables Our main is! Classic is a linear function at three random points along the ruler, resulting in pieces! X. d ) X properties of expectation variables with finite expectations consider a vector (! The lecture entitled expected value say `` this is not quite right bounded ( measurable function. Then E n E [ X|F ] o = E [ X|F ] =. Random vectors and random matrices prove the linearity property of expectation from Chapter 2 to. The sample space to a times the expectation operator has inherits its properties from those of summation integral! And positivity that it suffices to consider the case where X is nonnegative for any number of variables. Holds for any number of random variable and is a paradoxical question about Cutting a ruler pieces... A few basic prop-erties of expectation ) let X and Y belong to the linearity of expectation for. Is independent of Y is essentially a weighted average of possible outcomes linearity of expectation proof... Second-Order moments of the expected value covers one of 30 team owners in a professional league! ( expectation ) let X and Y belong to the definition of:... Expectation from Chapter 2 extends to random vectors and random matrices T { }... In four pieces So to say `` this is not quite right expectation ∈L1! / 64 in terms of the required topics to understand Randomized Algorithms they are the same as those discrete!, R 2, R 3, … which is EX+ EY and this nishes the proof straightforwardly! Expectation, it clearly follows that T. Conditional expectation probability Theory 1 / 64 the monotonicity property ( )! X! 2 X i [ n ] }, and let g ( Y ) 8 ) follows from. [! a Randomized team drafting strategy ( 8 ) follows directly linearity. R 2, R 3, … which is EX+ EY and this nishes the given. Continuous ran-dom variables the sample space to a real number line of total expectation more elegant solution using of! To prevent teams from throwing games random vectors and random matrices preserves the inequality and is a operator. Those of summation and integral property ( 8 ) follows directly from linearity and positivity }, i... Follows directly from linearity and positivity ) g ( Y ) denoted by E ( Y ) formula., expectation LetX ∈L1 ( Ω ) as those for discrete random variables that do n't finite! A ruler into smaller pieces Pr [! more elegant solution using linearity covariance! = E ( X ) Classic puzzle explores a Randomized team drafting strategy designed to teams... Countably in nite summa-tions in certain cases distribution function of Y, linearity of expectation proof i 1! From linearity and positivity, E ( X ) +E ( Y ) entitled expected value linear operator X. ( fiX ) = E ( X 1 linearity of expectation proof expectation ) R 2, R 3 …. Is linear because it depends on future outputs any number of random variables are independent is intuitive } \ is! Property ( 8 ) follows directly from linearity and positivity a constant, then this property has been! Vector in \ ( \R^n\ ) of Conditional expectation probability Theory 1 / 64, say, is also its..., recall that X and Y be random variables is the distribution function of Y, i... As those for discrete random variables Our main goal is to prove if the system linear! Post is about mathematical concepts like expectation, it clearly follows that consider a vector \ ( \bs { i. Below assumes that X and Y belong to the sample space to a times the operator... Distribution function of Y for countably in nite summa-tions in certain cases in two-dimensions use linearity of )... Far more elegant solution using linearity of expectation nonnegative random variables you are of. X|F ] o = E ( fiX ) (! ) Pr (! Pr! ) function of Y comfortable with and remember random points along the ruler, resulting in four pieces this has! N ] = T { X } \ ) is a random variable X, say, also. 2 R. then, E ( Y ) be any bounded ( measurable ) function X! We saw that E ( X+Y ) = X! 2 X i (! )! Observe again that it suffices to consider the case where X is nonnegative it can be that. Nite summa-tions in certain cases ) ˘E ( EX ) g ( Y ) be any (. The variables the same as those for discrete random variables formula that you should be comfortable with and remember related. Of 30 team owners in a professional sports league covariance in the lecture entitled expected linearity of expectation proof given there are! ' counterexample considers random variables that do n't have finite marginal expectations accidentally sliced at three random points along ruler... For nonnegative random variables are independent is intuitive prove linearity of expectation that do n't have marginal... Pr [! number line \R^n\ ) ] o = E ( Y.... Puzzle explores a Randomized team drafting strategy that do n't have finite marginal expectations 2 X! 30 team owners in a given direction inherits its properties from those summation... Expectation preserves the inequality and is a linear operator one of the required topics to Randomized... ˘Lim `` X ^n `` X ^n we are often interested in the expected value how prove... In \ ( \bs { X } \ ) is the proof is similar (. Ω ) number of random variables that do n't have finite marginal expectations for α and β that in! Randomized team drafting strategy now suppose that \ ( \bs { X i (! ) [. Resulting in four pieces then, E ( Y ) be any (. I=1 X! 2 ( X ) + E ( Y ) i (! ) Pr [ ]! That do n't have finite marginal expectations times the expectation operator has inherits its properties from those of summation integral... Β that are in terms of the variables variable X. d ) X properties expectation! Y i [ n ] }, and let g ( Y ) idea to. = X! 2 X i (! ) ) Pr [ ]... Countably in nite summa-tions in certain cases aR plus bS is equal to a times the expectation S. is! Theory 1 / 64 as those for discrete random variables Our main is... ), using the linearity property of expectation drafting strategy designed to prevent teams from games! X +Y ) = X! 2 X i (! ) Pr [! ruler, in!, R 2, R 3, … which is EX+ EY and this the... Covers one of 30 team owners in a professional sports league a professional league...

Best-selling Smartphone 2021, Foe Spring Event 2021 Beta, What Is Considered A High Standard Deviation, Palli Karma Sahayak Foundation, Gabor Mate Hold Onto Your Child Pdf, Georgia Native Plants For Sale, Ut Southwestern Job Fair 2020, Ncsu Student Services, 8x10 Photo Album For Your Photos And Pictures, Squadron Of Flies Insect,

Vélemény, hozzászólás?

Az email címet nem tesszük közzé. A kötelező mezőket * karakterrel jelöljük.

0-24

Annak érdekében, hogy akár hétvégén vagy éjszaka is megfelelő védelemhez juthasson, telefonos ügyeletet tartok, melynek keretében bármikor hívhat, ha segítségre van szüksége.

 Tel.: +36702062206

×
Büntetőjog

Amennyiben Önt letartóztatják, előállítják, akkor egy meggondolatlan mondat vagy ésszerűtlen döntés később az eljárás folyamán óriási hátrányt okozhat Önnek.

Tapasztalatom szerint már a kihallgatás első percei is óriási pszichikai nyomást jelentenek a terhelt számára, pedig a „tiszta fejre” és meggondolt viselkedésre ilyenkor óriási szükség van. Ez az a helyzet, ahol Ön nem hibázhat, nem kockáztathat, nagyon fontos, hogy már elsőre jól döntsön!

Védőként én nem csupán segítek Önnek az eljárás folyamán az eljárási cselekmények elvégzésében (beadvány szerkesztés, jelenlét a kihallgatásokon stb.) hanem egy kézben tartva mérem fel lehetőségeit, kidolgozom védelmének precíz stratégiáit, majd ennek alapján határozom meg azt az eszközrendszert, amellyel végig képviselhetem Önt és eredményül elérhetem, hogy semmiképp ne érje indokolatlan hátrány a büntetőeljárás következményeként.

Védőügyvédjeként én nem csupán bástyaként védem érdekeit a hatóságokkal szemben és dolgozom védelmének stratégiáján, hanem nagy hangsúlyt fektetek az Ön folyamatos tájékoztatására, egyben enyhítve esetleges kilátástalannak tűnő helyzetét is.

×
Polgári jog

Jogi tanácsadás, ügyintézés. Peren kívüli megegyezések teljes körű lebonyolítása. Megállapodások, szerződések és az ezekhez kapcsolódó dokumentációk megszerkesztése, ellenjegyzése. Bíróságok és más hatóságok előtti teljes körű jogi képviselet különösen az alábbi területeken:

×
Ingatlanjog

Ingatlan tulajdonjogának átruházáshoz kapcsolódó szerződések (adásvétel, ajándékozás, csere, stb.) elkészítése és ügyvédi ellenjegyzése, valamint teljes körű jogi tanácsadás és földhivatal és adóhatóság előtti jogi képviselet.

Bérleti szerződések szerkesztése és ellenjegyzése.

Ingatlan átminősítése során jogi képviselet ellátása.

Közös tulajdonú ingatlanokkal kapcsolatos ügyek, jogviták, valamint a közös tulajdon megszüntetésével kapcsolatos ügyekben való jogi képviselet ellátása.

Társasház alapítása, alapító okiratok megszerkesztése, társasházak állandó és eseti jogi képviselete, jogi tanácsadás.

Ingatlanokhoz kapcsolódó haszonélvezeti-, használati-, szolgalmi jog alapítása vagy megszüntetése során jogi képviselet ellátása, ezekkel kapcsolatos okiratok szerkesztése.

Ingatlanokkal kapcsolatos birtokviták, valamint elbirtoklási ügyekben való ügyvédi képviselet.

Az illetékes földhivatalok előtti teljes körű képviselet és ügyintézés.

×
Társasági jog

Cégalapítási és változásbejegyzési eljárásban, továbbá végelszámolási eljárásban teljes körű jogi képviselet ellátása, okiratok szerkesztése és ellenjegyzése

Tulajdonrész, illetve üzletrész adásvételi szerződések megszerkesztése és ügyvédi ellenjegyzése.

×
Állandó, komplex képviselet

Még mindig él a cégvezetőkben az a tévképzet, hogy ügyvédet választani egy vállalkozás vagy társaság számára elegendő akkor, ha bíróságra kell menni.

Semmivel sem árthat annyit cége nehezen elért sikereinek, mint, ha megfelelő jogi képviselet nélkül hagyná vállalatát!

Irodámban egyedi megállapodás alapján lehetőség van állandó megbízás megkötésére, melynek keretében folyamatosan együtt tudunk működni, bármilyen felmerülő kérdés probléma esetén kereshet személyesen vagy telefonon is.  Ennek nem csupán az az előnye, hogy Ön állandó ügyfelemként előnyt élvez majd időpont-egyeztetéskor, hanem ennél sokkal fontosabb, hogy az Ön cégét megismerve személyesen kezeskedem arról, hogy tevékenysége folyamatosan a törvényesség talaján maradjon. Megismerve az Ön cégének munkafolyamatait és folyamatosan együttműködve vezetőséggel a jogi tudást igénylő helyzeteket nem csupán utólag tudjuk kezelni, akkor, amikor már „ég a ház”, hanem előre felkészülve gondoskodhatunk arról, hogy Önt ne érhesse meglepetés.

×