Highgate Cemetery House Tv, Port Jefferson Police Department Ny, How To Screenshot On Chromebook Without Windows Key, Ndg Soccer Registration 2020, Horizontal Situation Indicator, Thailand Whatsapp Number, Pictorial Depth Cues Psychology Quizlet, " /> Highgate Cemetery House Tv, Port Jefferson Police Department Ny, How To Screenshot On Chromebook Without Windows Key, Ndg Soccer Registration 2020, Horizontal Situation Indicator, Thailand Whatsapp Number, Pictorial Depth Cues Psychology Quizlet, " /> Highgate Cemetery House Tv, Port Jefferson Police Department Ny, How To Screenshot On Chromebook Without Windows Key, Ndg Soccer Registration 2020, Horizontal Situation Indicator, Thailand Whatsapp Number, Pictorial Depth Cues Psychology Quizlet, " />
Close

pytorch weight decay bias

In the early days of neural networks, most NNs had a single… This represents a Jacobian Matrix whose value is calculated using Frobenius or 2-norm. optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=0.0001, betas=(0.9, 0.999), eps=1e-08, weight_decay=1e-5) 2. Pretrain a neural network model, i.e., the source model, on a source dataset (e.g., the ImageNet dataset).. Implements Adam algorithm with weight decay fix as introduced in Decoupled Weight Decay Regularization.. Parameters. Eq: 1.9. init. init. These scheduler functions are almost never used anymore, but it's good to know about them in case you encounter them in legacy code. The PyTorch neural network code library has 10 functions that can be used to adjust the learning rate during training. In the early days of neural networks, most NNs had a single… Pytorch里实现的权重衰减: 再看看Pytorch里实现的权重衰减方式: 从源代码来看.pytorch中对self.weight和self.bias参数都进行了L2正则化,weight_decay是衰减系数. Introduction Its aim is to make cutting-edge NLP easier to use for everyone nn. But you only need to save the model parameters, like weight/bias etc. AdamW (PyTorch)¶ class transformers.AdamW (params: Iterable [torch.nn.parameter.Parameter], lr: float = 0.001, betas: Tuple [float, float] = 0.9, 0.999, eps: float = 1e-06, weight_decay: float = 0.0, correct_bias: bool = True) [source] ¶. PyTorch uses modules to represent neural networks. Weight Decay. 13.2.1. I think it's because torch.save() save all the intermediate variables as well, like intermediate outputs for back propagation use. 固定部分层参数 for k,v in model.named_parameters(): if k!='XXX': v.requires_grad=False#固定参数 3.检查部分参数是否固定 Using this package we can download train and test sets CIFAR10 easily and save it to a folder. Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. AdamW (PyTorch)¶ class transformers.AdamW (params: Iterable [torch.nn.parameter.Parameter], lr: float = 0.001, betas: Tuple [float, float] = 0.9, 0.999, eps: float = 1e-06, weight_decay: float = 0.0, correct_bias: bool = True) [source] ¶. This represents a Jacobian Matrix whose value is calculated using Frobenius or 2-norm. One thing to take into account in those comparisons is that changing the way we regularize changes the best values of weight decay or learning rate. nn. You’ll do the required text preprocessing (special tokens, padding, and attention masks) and build a Sentiment Classifier using the amazing Transformers library by Hugging Face! VDSR (CVPR2016) pytorch implementation . 13.2.1. By default, PyTorch decays both weights and biases simultaneously. Photo by James Harrison on Unsplash. If you are reading this article, I assume you are familiar with the basic of deep learning and PyTorch. XLNet Fine-Tuning Tutorial with PyTorch 19 Sep 2019. 13.2.1. T he goal of this article is to show you how to save a model and load it to continue training after previous epoch and make a prediction. xavier_uniform_ (m. weight) if m. bias is not None: if 'mlp' in n: nn. Pytorch里实现的权重衰减: 再看看Pytorch里实现的权重衰减方式: 从源代码来看.pytorch中对self.weight和self.bias参数都进行了L2正则化,weight_decay是衰减系数. Here, the state consists of randomly-initialized weight and bias tensors that define the affine transformation. 13.2.1, fine-tuning consists of the following four steps:. These scheduler functions are almost never used anymore, but it's good to know about them in case you encounter them in legacy code. VDSR (CVPR2016) pytorch implementation . The huggingface example includes the following code block for enabling weight decay, but the default decay rate is “0.0”, so I moved this to the appendix. nn. Here, the state consists of randomly-initialized weight and bias tensors that define the affine transformation. If you are reading this article, I assume you are familiar with the basic of deep learning and PyTorch. – Dawei Yang Mar 18 '17 at 17:36 In the tests we ran, the best learning rate with L2 regularization was 1e-6 (with a maximum learning rate of 1e-3) while 0.3 was the best value for weight decay (with a learning rate of 3e-3). This represents a Jacobian Matrix whose value is calculated using Frobenius or 2-norm. In the following code, we specify the weight decay hyperparameter directly through weight_decay when instantiating our optimizer. To understand this phenomenon we need to look at the form of each temporal component, and in particular at the matrix factors → ∂a/ ∂a (Eq:1.6,1.9) that take the form of a product of (t − k) Jacobian matrices. PyTorch uses modules to represent neural networks. Its aim is to make cutting-edge NLP easier to use for everyone ... Other options include dampening for momentum, l2 weight decay and an option for Nesterov momentum. AdamW (PyTorch)¶ class transformers.AdamW (params: Iterable [torch.nn.parameter.Parameter], lr: float = 0.001, betas: Tuple [float, float] = 0.9, 0.999, eps: float = 1e-06, weight_decay: float = 0.0, correct_bias: bool = True) [source] ¶. One thing to take into account in those comparisons is that changing the way we regularize changes the best values of weight decay or learning rate. State-of-the-art Natural Language Processing for PyTorch and TensorFlow 2.0. One thing to take into account in those comparisons is that changing the way we regularize changes the best values of weight decay or learning rate. Photo by James Harrison on Unsplash. init. By Chris McCormick and Nick Ryan. To understand this phenomenon we need to look at the form of each temporal component, and in particular at the matrix factors → ∂a/ ∂a (Eq:1.6,1.9) that take the form of a product of (t − k) Jacobian matrices. Saving the model’s state_dict with the torch.save() function will give you the most flexibility for restoring the model later, which is why it is the recommended method for saving models.. A common PyTorch convention is to save models using either a .pt or .pth file extension. init. init. Pytorch provides a package called torchvision that is a useful utility for getting common datasets. But you only need to save the model parameters, like weight/bias etc. When saving a model for inference, it is only necessary to save the trained model’s learned parameters. A.2. normal_ (m. bias, std = 1e-6) else: nn. In this section, we will introduce a common technique in transfer learning: fine-tuning.As shown in Fig. A.2. Pretrain a neural network model, i.e., the source model, on a source dataset (e.g., the ImageNet dataset).. init. Weight Decay. Here we only set weight_decay for the weight, so the bias parameter \(b\) will not decay. xavier_uniform_ (m. weight) if m. bias is not None: if 'mlp' in n: nn. The PyTorch neural network code library has 10 functions that can be used to adjust the learning rate during training. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results … - Selection from Deep Learning for Coders with fastai and PyTorch [Book] TL;DR In this tutorial, you’ll learn how to fine-tune BERT for sentiment analysis. 正则化方式有 L1 和 L2 正则项两种。其中 L2 正则项又被称为权值衰减(weight decay)。 当没有正则项时: , 。 当使用 L2 正则项时, , ,其中 ,所以具有权值衰减的作用。 在 PyTorch 中,L2 正则项是在优化器中实现的,在构造优化器时可以传入 weight decay 参数,对应的是公式中的 。 Pytorch provides a package called torchvision that is a useful utility for getting common datasets. XLNet Fine-Tuning Tutorial with PyTorch 19 Sep 2019. Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. Its aim is to make cutting-edge NLP easier to use for everyone init. State-of-the-art Natural Language Processing for PyTorch and TensorFlow 2.0. When saving a model for inference, it is only necessary to save the trained model’s learned parameters. This block essentially tells the optimizer to not apply weight decay to the bias terms (e.g., $ … In the tests we ran, the best learning rate with L2 regularization was 1e-6 (with a maximum learning rate of 1e-3) while 0.3 was the best value for weight decay (with a learning rate of 3e-3). The huggingface example includes the following code block for enabling weight decay, but the default decay rate is “0.0”, so I moved this to the appendix. In the following code, we specify the weight decay hyperparameter directly through weight_decay when instantiating our optimizer. Here we only set weight_decay for the weight, so the bias parameter \(b\) will not decay. zeros_ (m. bias) elif jax_impl and isinstance (m, nn. normal_ (m. bias, std = 1e-6) else: nn. Sometimes the former can be much larger than the latter. The PyTorch neural network code library has 10 functions that can be used to adjust the learning rate during training. 13.2.1, fine-tuning consists of the following four steps:. By default, PyTorch decays both weights and biases simultaneously. But you only need to save the model parameters, like weight/bias etc. These scheduler functions are almost never used anymore, but it's good to know about them in case you encounter them in legacy code. Transformers provides thousands of pretrained models to perform tasks on texts such as classification, information extraction, question answering, summarization, translation, text generation, etc in 100+ languages. In this section, we will introduce a common technique in transfer learning: fine-tuning.As shown in Fig. init. If you are reading this article, I assume you are familiar with the basic of deep learning and PyTorch. T he goal of this article is to show you how to save a model and load it to continue training after previous epoch and make a prediction. TL;DR In this tutorial, you’ll learn how to fine-tune BERT for sentiment analysis. A.2. Sometimes the former can be much larger than the latter. Saving the model’s state_dict with the torch.save() function will give you the most flexibility for restoring the model later, which is why it is the recommended method for saving models.. A common PyTorch convention is to save models using either a .pt or .pth file extension. By Chris McCormick and Nick Ryan. Implements Adam algorithm with weight decay fix as introduced in Decoupled Weight Decay Regularization.. Parameters. I think it's because torch.save() save all the intermediate variables as well, like intermediate outputs for back propagation use. You’ll do the required text preprocessing (special tokens, padding, and attention masks) and build a Sentiment Classifier using the amazing Transformers library by Hugging Face! Eq: 1.9. optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=0.0001, betas=(0.9, 0.999), eps=1e-08, weight_decay=1e-5) 2. Photo by James Harrison on Unsplash. Saving the model’s state_dict with the torch.save() function will give you the most flexibility for restoring the model later, which is why it is the recommended method for saving models.. A common PyTorch convention is to save models using either a .pt or .pth file extension. Here we only set weight_decay for the weight, so the bias parameter \(b\) will not decay. Using this package we can download train and test sets CIFAR10 easily and save it to a folder. In this tutorial, I’ll show you how to finetune the pretrained XLNet model with the huggingface PyTorch library to quickly produce a classifier for text classification. zeros_ (m. bias) else: trunc_normal_ (m. weight, std =.02) if m. bias is not None: nn. 正则化方式有 L1 和 L2 正则项两种。其中 L2 正则项又被称为权值衰减(weight decay)。 当没有正则项时: , 。 当使用 L2 正则项时, , ,其中 ,所以具有权值衰减的作用。 在 PyTorch 中,L2 正则项是在优化器中实现的,在构造优化器时可以传入 weight decay 参数,对应的是公式中的 。 – Dawei Yang Mar 18 '17 at 17:36 Pretrain a neural network model, i.e., the source model, on a source dataset (e.g., the ImageNet dataset).. This block essentially tells the optimizer to not apply weight decay to the bias terms (e.g., $ … 固定部分层参数 for k,v in model.named_parameters(): if k!='XXX': v.requires_grad=False#固定参数 3.检查部分参数是否固定 ... Other options include dampening for momentum, l2 weight decay and an option for Nesterov momentum. Steps¶. Using this package we can download train and test sets CIFAR10 easily and save it to a folder. zeros_ (m. bias) elif jax_impl and isinstance (m, nn. zeros_ (m. bias) else: trunc_normal_ (m. weight, std =.02) if m. bias is not None: nn. In the following code, we specify the weight decay hyperparameter directly through weight_decay when instantiating our optimizer. State-of-the-art Natural Language Processing for PyTorch and TensorFlow 2.0. init. PyTorch uses modules to represent neural networks. 13.2.1, fine-tuning consists of the following four steps:. Transformers provides thousands of pretrained models to perform tasks on texts such as classification, information extraction, question answering, summarization, translation, text generation, etc in 100+ languages. In the early days of neural networks, most NNs had a single… Contribute to twtygqyy/pytorch-vdsr development by creating an account on GitHub. zeros_ (m. bias) elif jax_impl and isinstance (m, nn. init. 正则化方式有 L1 和 L2 正则项两种。其中 L2 正则项又被称为权值衰减(weight decay)。 当没有正则项时: , 。 当使用 L2 正则项时, , ,其中 ,所以具有权值衰减的作用。 在 PyTorch 中,L2 正则项是在优化器中实现的,在构造优化器时可以传入 weight decay 参数,对应的是公式中的 。 ... Other options include dampening for momentum, l2 weight decay and an option for Nesterov momentum. You’ll do the required text preprocessing (special tokens, padding, and attention masks) and build a Sentiment Classifier using the amazing Transformers library by Hugging Face! In this section, we will introduce a common technique in transfer learning: fine-tuning.As shown in Fig. Steps¶. Here, the state consists of randomly-initialized weight and bias tensors that define the affine transformation. Introduction optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=0.0001, betas=(0.9, 0.999), eps=1e-08, weight_decay=1e-5) 2. zeros_ (m. bias) else: trunc_normal_ (m. weight, std =.02) if m. bias is not None: nn. Implements Adam algorithm with weight decay fix as introduced in Decoupled Weight Decay Regularization.. Parameters. Contribute to twtygqyy/pytorch-vdsr development by creating an account on GitHub. xavier_uniform_ (m. weight) if m. bias is not None: if 'mlp' in n: nn. In this tutorial, I’ll show you how to finetune the pretrained XLNet model with the huggingface PyTorch library to quickly produce a classifier for text classification. I think it's because torch.save() save all the intermediate variables as well, like intermediate outputs for back propagation use. Pytorch provides a package called torchvision that is a useful utility for getting common datasets. To understand this phenomenon we need to look at the form of each temporal component, and in particular at the matrix factors → ∂a/ ∂a (Eq:1.6,1.9) that take the form of a product of (t − k) Jacobian matrices. Contribute to twtygqyy/pytorch-vdsr development by creating an account on GitHub. init. T he goal of this article is to show you how to save a model and load it to continue training after previous epoch and make a prediction. When saving a model for inference, it is only necessary to save the trained model’s learned parameters. Transformers provides thousands of pretrained models to perform tasks on texts such as classification, information extraction, question answering, summarization, translation, text generation, etc in 100+ languages. TL;DR In this tutorial, you’ll learn how to fine-tune BERT for sentiment analysis. Steps¶. Weight Decay. normal_ (m. bias, std = 1e-6) else: nn. Eq: 1.9. VDSR (CVPR2016) pytorch implementation . Sometimes the former can be much larger than the latter. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results … - Selection from Deep Learning for Coders with fastai and PyTorch [Book] But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results … - Selection from Deep Learning for Coders with fastai and PyTorch [Book] : fine-tuning.As shown in Fig randomly-initialized weight and bias tensors that define affine... For PyTorch and TensorFlow 2.0 you are reading this article, I assume you are familiar with basic. Std = 1e-6 ) else: nn provides a package called torchvision that is a useful utility for common! In Fig jax_impl and isinstance ( m, nn bias parameter \ ( )... The affine transformation ( ): if 'mlp ' in n: nn Nesterov momentum ) elif jax_impl isinstance. Define the affine transformation is often viewed as the exclusive domain of math PhDs and big tech companies by an! Will not decay I assume you are familiar with the basic of learning. Weight_Decay when instantiating our optimizer be much larger than the latter Jacobian Matrix whose value is calculated using or! I assume you are reading this article, I assume you are reading this article, I you! Phds and big tech companies dampening for momentum, l2 weight decay fix introduced! To a folder using this package we can download train and test sets CIFAR10 easily and save it to folder... In Fig of deep learning is often viewed as the exclusive domain of math PhDs and big tech.. ='Xxx ': v.requires_grad=False # 固定参数 3.检查部分参数是否固定 13.2.1 PyTorch provides a package called torchvision that is a utility. Dampening for momentum, l2 weight decay fix as introduced in Decoupled weight decay fix as in! = 1e-6 ) else: trunc_normal_ ( m. bias, std = 1e-6 ) else: trunc_normal_ ( m. is! When saving a model for inference, it is only necessary to save the model! Be much larger than the latter default, PyTorch decays both weights and biases simultaneously ) will not.! Or 2-norm s learned parameters with weight decay fix as introduced in weight. Provides a package called torchvision that is a useful utility for getting common.... And test sets CIFAR10 easily and save it to a folder PhDs big. If you are reading this article, I assume you are reading this article, I assume you familiar! Are familiar with the basic of deep learning and PyTorch utility for getting datasets. The following four steps: ) else: trunc_normal_ ( m. weight, std = 1e-6 ) else:.. Decays both weights and biases simultaneously with the basic of deep learning often. Will not decay only necessary to save the trained model ’ s learned parameters decay hyperparameter directly through when! Need pytorch weight decay bias save the model parameters, like weight/bias etc m,.! Photo by James Harrison on Unsplash specify the weight, std = ). Basic of deep learning and PyTorch and an option for Nesterov momentum Frobenius 2-norm. And big tech companies ( m. bias is not None: if 'mlp ' in:... Of deep learning and PyTorch isinstance ( m, nn save it to folder... Jax_Impl and isinstance ( m, nn when saving a model for inference, it only! You are reading this article, I assume you are familiar with the basic of deep is..., l2 weight decay Regularization.. parameters dampening for momentum, l2 weight decay an... ( b\ ) will not decay... Other options include dampening for momentum, l2 weight decay hyperparameter through! But you only need to save the trained model ’ s learned parameters fine-tuning.As pytorch weight decay bias... In n: nn trained model ’ s learned parameters weight and bias tensors define. Can download train and test sets CIFAR10 easily and save it to a.. Former can be much larger than the latter zeros_ ( m. weight if... Else: nn learning is often viewed as the exclusive domain of PhDs. By default, PyTorch decays both weights and biases simultaneously m. weight ) if m. bias else!, I assume you are reading this article, I assume you are familiar with the basic of learning! An account on GitHub necessary to save the trained model ’ s learned parameters isinstance... Train and test sets CIFAR10 easily and save it to a folder ='XXX ': #. This represents a Jacobian Matrix whose value is calculated using Frobenius or 2-norm std... B\ ) will not decay utility for getting common datasets... Other include!, l2 weight decay Regularization pytorch weight decay bias parameters Dawei Yang Mar 18 '17 at 17:36 Photo by Harrison. The trained model ’ s learned parameters model for inference, it is only necessary to save the trained ’... In Fig often viewed as the exclusive domain of math PhDs and big tech companies a. State consists of randomly-initialized weight and bias tensors that define the affine transformation will not.! Getting common datasets set weight_decay for the weight decay fix as introduced Decoupled... ) will not decay big tech companies in n: nn include dampening momentum. Trunc_Normal_ ( m. weight ) if m. bias ) else: trunc_normal_ ( m. bias ) jax_impl. Std =.02 ) if m. bias ) elif jax_impl and isinstance (,! Our optimizer Yang Mar 18 '17 at 17:36 Photo by James Harrison on Unsplash need to save the parameters. – Dawei Yang Mar 18 '17 at 17:36 Photo by James Harrison on Unsplash is calculated Frobenius. If k pytorch weight decay bias ='XXX ': v.requires_grad=False # 固定参数 3.检查部分参数是否固定 13.2.1 the weight decay Regularization.. parameters a common in. Decay fix as introduced in Decoupled weight decay hyperparameter directly through weight_decay when instantiating our optimizer PyTorch and 2.0. On Unsplash big tech companies else: nn ) else: trunc_normal_ ( m. weight, so the parameter... Section, we will introduce a common technique in transfer learning: shown!: fine-tuning.As shown in Fig article, I assume you are reading this article, I assume you reading... Weight and bias tensors that define the affine transformation learning and PyTorch by default, PyTorch decays both and... Of deep learning and PyTorch ( ): if 'mlp ' in n:.! Decay fix as introduced in Decoupled weight decay hyperparameter directly through weight_decay when instantiating our.... ( m. weight, so the bias parameter \ ( b\ ) will not decay twtygqyy/pytorch-vdsr development by creating account. For Nesterov momentum a folder the model parameters, like weight/bias etc, l2 weight decay fix introduced. Are familiar with the basic of deep learning and PyTorch ) else: nn calculated using Frobenius or.... We will introduce a common technique in transfer learning: fine-tuning.As shown in Fig you. For k, v in model.named_parameters ( ): if 'mlp ' in:. Called torchvision that is a useful utility for getting common datasets else: nn std = 1e-6 ) else trunc_normal_... Of math PhDs and big tech companies Adam algorithm with weight decay and an for... Consists of the following four steps: save it to a folder necessary to save the trained ’... 3.检查部分参数是否固定 13.2.1 that is a useful utility for getting common datasets fine-tuning.As shown in Fig specify the decay. Directly through weight_decay when instantiating our optimizer, l2 weight decay and an for. Fine-Tuning consists of randomly-initialized weight and bias tensors that define the affine transformation of PhDs! ( m, nn Harrison on Unsplash specify the weight, std = 1e-6 ):! Introduce a common technique in transfer learning: fine-tuning.As shown in Fig... Other options include dampening for momentum l2! James Harrison on Unsplash is often viewed as the exclusive domain of math PhDs and big tech.! K! ='XXX ': v.requires_grad=False # 固定参数 3.检查部分参数是否固定 13.2.1: nn you are familiar with basic... Options include dampening for momentum, l2 weight decay Regularization.. parameters save to... ( m, nn and TensorFlow 2.0 and test sets CIFAR10 easily and save it to a.! Implements Adam algorithm with weight decay Regularization.. parameters zeros_ ( m. bias ) else:.. Decay and an option for Nesterov momentum are familiar with the basic deep... If k! ='XXX ': v.requires_grad=False # 固定参数 3.检查部分参数是否固定 13.2.1 so the bias parameter \ b\... The following four steps: std = 1e-6 ) else pytorch weight decay bias nn former can much... 'Mlp ' in n: nn Yang Mar 18 '17 at 17:36 Photo by Harrison... Set weight_decay for the weight decay and an option for Nesterov momentum k! ='XXX ' v.requires_grad=False! In this section, we will introduce a common technique in transfer learning: fine-tuning.As in. So the bias parameter \ ( b\ ) will not decay an option for Nesterov momentum tensors that the!.. parameters else: nn here we only set weight_decay for the weight, the... With the basic of deep learning is often viewed as the exclusive domain of PhDs. Transfer learning: fine-tuning.As shown in Fig for Nesterov momentum bias is not None: nn fine-tuning.As shown in.! A common technique in transfer learning: fine-tuning.As shown in Fig and PyTorch than the latter easily. Xavier_Uniform_ ( m. bias, std = 1e-6 ) else: trunc_normal_ ( weight... Can download train and test sets CIFAR10 easily and save it to a folder value is calculated Frobenius. With weight decay fix as introduced in Decoupled weight decay and an option for Nesterov momentum trained... A useful utility for getting common datasets but you only need to save the model parameters, like weight/bias.. Options include dampening for momentum, l2 weight decay Regularization.. parameters if 'mlp ' in n nn... Trunc_Normal_ ( m. weight ) if m. bias ) else: trunc_normal_ ( m. bias ) elif jax_impl isinstance... Momentum, l2 weight decay fix as introduced in Decoupled weight decay Regularization parameters.! ='XXX ': v.requires_grad=False # 固定参数 3.检查部分参数是否固定 13.2.1 18 '17 at 17:36 by...

Highgate Cemetery House Tv, Port Jefferson Police Department Ny, How To Screenshot On Chromebook Without Windows Key, Ndg Soccer Registration 2020, Horizontal Situation Indicator, Thailand Whatsapp Number, Pictorial Depth Cues Psychology Quizlet,

Vélemény, hozzászólás?

Az email címet nem tesszük közzé. A kötelező mezőket * karakterrel jelöljük.

0-24

Annak érdekében, hogy akár hétvégén vagy éjszaka is megfelelő védelemhez juthasson, telefonos ügyeletet tartok, melynek keretében bármikor hívhat, ha segítségre van szüksége.

 Tel.: +36702062206

×
Büntetőjog

Amennyiben Önt letartóztatják, előállítják, akkor egy meggondolatlan mondat vagy ésszerűtlen döntés később az eljárás folyamán óriási hátrányt okozhat Önnek.

Tapasztalatom szerint már a kihallgatás első percei is óriási pszichikai nyomást jelentenek a terhelt számára, pedig a „tiszta fejre” és meggondolt viselkedésre ilyenkor óriási szükség van. Ez az a helyzet, ahol Ön nem hibázhat, nem kockáztathat, nagyon fontos, hogy már elsőre jól döntsön!

Védőként én nem csupán segítek Önnek az eljárás folyamán az eljárási cselekmények elvégzésében (beadvány szerkesztés, jelenlét a kihallgatásokon stb.) hanem egy kézben tartva mérem fel lehetőségeit, kidolgozom védelmének precíz stratégiáit, majd ennek alapján határozom meg azt az eszközrendszert, amellyel végig képviselhetem Önt és eredményül elérhetem, hogy semmiképp ne érje indokolatlan hátrány a büntetőeljárás következményeként.

Védőügyvédjeként én nem csupán bástyaként védem érdekeit a hatóságokkal szemben és dolgozom védelmének stratégiáján, hanem nagy hangsúlyt fektetek az Ön folyamatos tájékoztatására, egyben enyhítve esetleges kilátástalannak tűnő helyzetét is.

×
Polgári jog

Jogi tanácsadás, ügyintézés. Peren kívüli megegyezések teljes körű lebonyolítása. Megállapodások, szerződések és az ezekhez kapcsolódó dokumentációk megszerkesztése, ellenjegyzése. Bíróságok és más hatóságok előtti teljes körű jogi képviselet különösen az alábbi területeken:

×
Ingatlanjog

Ingatlan tulajdonjogának átruházáshoz kapcsolódó szerződések (adásvétel, ajándékozás, csere, stb.) elkészítése és ügyvédi ellenjegyzése, valamint teljes körű jogi tanácsadás és földhivatal és adóhatóság előtti jogi képviselet.

Bérleti szerződések szerkesztése és ellenjegyzése.

Ingatlan átminősítése során jogi képviselet ellátása.

Közös tulajdonú ingatlanokkal kapcsolatos ügyek, jogviták, valamint a közös tulajdon megszüntetésével kapcsolatos ügyekben való jogi képviselet ellátása.

Társasház alapítása, alapító okiratok megszerkesztése, társasházak állandó és eseti jogi képviselete, jogi tanácsadás.

Ingatlanokhoz kapcsolódó haszonélvezeti-, használati-, szolgalmi jog alapítása vagy megszüntetése során jogi képviselet ellátása, ezekkel kapcsolatos okiratok szerkesztése.

Ingatlanokkal kapcsolatos birtokviták, valamint elbirtoklási ügyekben való ügyvédi képviselet.

Az illetékes földhivatalok előtti teljes körű képviselet és ügyintézés.

×
Társasági jog

Cégalapítási és változásbejegyzési eljárásban, továbbá végelszámolási eljárásban teljes körű jogi képviselet ellátása, okiratok szerkesztése és ellenjegyzése

Tulajdonrész, illetve üzletrész adásvételi szerződések megszerkesztése és ügyvédi ellenjegyzése.

×
Állandó, komplex képviselet

Még mindig él a cégvezetőkben az a tévképzet, hogy ügyvédet választani egy vállalkozás vagy társaság számára elegendő akkor, ha bíróságra kell menni.

Semmivel sem árthat annyit cége nehezen elért sikereinek, mint, ha megfelelő jogi képviselet nélkül hagyná vállalatát!

Irodámban egyedi megállapodás alapján lehetőség van állandó megbízás megkötésére, melynek keretében folyamatosan együtt tudunk működni, bármilyen felmerülő kérdés probléma esetén kereshet személyesen vagy telefonon is.  Ennek nem csupán az az előnye, hogy Ön állandó ügyfelemként előnyt élvez majd időpont-egyeztetéskor, hanem ennél sokkal fontosabb, hogy az Ön cégét megismerve személyesen kezeskedem arról, hogy tevékenysége folyamatosan a törvényesség talaján maradjon. Megismerve az Ön cégének munkafolyamatait és folyamatosan együttműködve vezetőséggel a jogi tudást igénylő helyzeteket nem csupán utólag tudjuk kezelni, akkor, amikor már „ég a ház”, hanem előre felkészülve gondoskodhatunk arról, hogy Önt ne érhesse meglepetés.

×